CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond Dynamic atrioventricular delay programming improves ventricular electrical synchronization as evaluated by 3D vectorcardiography Two-Year Outcomes and Predictors of Target Lesion Revascularization for Non-Left Main Coronary Bifurcation Lesions Following Two-Stent Strategy With 2nd-Generation Drug-Eluting Stents Association Between Living in Food Deserts and Cardiovascular Risk 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure The Astronaut Cardiovascular Health and Risk Modification (Astro-CHARM) Coronary Calcium Atherosclerotic Cardiovascular Disease Risk Calculator Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review Application of High-Sensitivity Troponin in Suspected Myocardial Infarction Older Adults in the Cardiac Intensive Care Unit: Factoring Geriatric Syndromes in the Management, Prognosis, and Process of Care: A Scientific Statement From the American Heart Association Complete Revascularization with Multivessel PCI for Myocardial Infarction

Clinical Trial2017 Aug;10(8). pii: e005455.

JOURNAL:Circ Cardiovasc Interv. Article Link

Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Optical Coherence Tomography and Computational Fluid Dynamics Study

Yamamoto E, Siasos G, Jang IK et al. Keywords: atherosclerosis; coronary vessels; shear stress; tomography, optical coherence

ABSTRACT


BACKGROUND - Low endothelial shear stress (ESS) is associated with plaque progression and vulnerability. To date, changes in plaque phenotype over time in relation to ESS have not been studied in humans. The aim of this study was to investigate whether local ESS can predict subsequent changes to plaque phenotype using optical coherence tomography.


METHODS AND RESULTS - A total of 25 coronary arteries from 20 patients who underwent baseline and 6-month follow-up optical coherence tomography were included. Arteries were divided into serial 3-mm segments, and plaque characteristics were evaluated in each segment. A total of 145 segments were divided into low-ESS group (ESS <1 Pa) and higher-ESS group (ESS ≥1 Pa) based on baseline computational flow dynamics analyses. At baseline, low-ESS segments had significantly thinner fibrous cap thickness compared with higher-ESS segments (128.2±12.3 versus 165.0±12.0 μm; P=0.03), although lipid arc was similar. At follow-up, fibrous cap thickness remained thin in low-ESS segments, whereas it significantly increased in higher-ESS segments (165.0±12.0 to 182.2±14.1 μm; P=0.04). Lipid arc widened only in plaques with low ESS (126.4±15.2° to 141.1±14.0°; P=0.01). After adjustment, baseline ESS was associated with fibrous cap thickness (β, 9.089; 95% confidence interval, 2.539-15.640; P=0.007) and lipid arc (β, -4.381; 95% confidence interval, -6.946 to -1.815; P=0.001) at follow-up.

CONCLUSIONS - Low ESS is significantly associated with baseline high-risk plaque phenotype and progression to higher-risk phenotype at 6 months.

CLINICAL TRIAL REGISTRATION - URL: http://www.clinicaltrials.gov. Unique identifier: NCT01110538.

© 2017 American Heart Association, Inc.