CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Titration of Medical Therapy for Heart Failure With Reduced Ejection Fraction Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies Attenuated plaque detected by intravascular ultrasound: clinical, angiographic, and morphologic features and post-percutaneous coronary intervention complications in patients with acute coronary syndromes Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: a feasibility, safety, and outcome study Design and rationale for a randomised comparison of everolimus-eluting stents and coronary artery bypass graft surgery in selected patients with left main coronary artery disease: the EXCEL trial Positive recommendation for angiotensin receptor/neprilysin inhibitor: First medication approval for heart failure without "reduced ejection fraction" Adjunctive Cilostazol to Dual Antiplatelet Therapy to Enhance Mobilization of Endothelial Progenitor Cell in Patients with Acute Myocardial Infarction: A Randomized, Placebo-Controlled EPISODE Trial Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis Cardiac Resynchronization Therapy and Ventricular Tachyarrhythmia Burden Clinical impact of intravascular ultrasound guidance in drug-eluting stent implantation for unprotected left main coronary disease: pooled analysis at the patient-level of 4 registries

Clinical Trial2017 Aug;10(8). pii: e005455.

JOURNAL:Circ Cardiovasc Interv. Article Link

Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Optical Coherence Tomography and Computational Fluid Dynamics Study

Yamamoto E, Siasos G, Jang IK et al. Keywords: atherosclerosis; coronary vessels; shear stress; tomography, optical coherence

ABSTRACT


BACKGROUND - Low endothelial shear stress (ESS) is associated with plaque progression and vulnerability. To date, changes in plaque phenotype over time in relation to ESS have not been studied in humans. The aim of this study was to investigate whether local ESS can predict subsequent changes to plaque phenotype using optical coherence tomography.


METHODS AND RESULTS - A total of 25 coronary arteries from 20 patients who underwent baseline and 6-month follow-up optical coherence tomography were included. Arteries were divided into serial 3-mm segments, and plaque characteristics were evaluated in each segment. A total of 145 segments were divided into low-ESS group (ESS <1 Pa) and higher-ESS group (ESS ≥1 Pa) based on baseline computational flow dynamics analyses. At baseline, low-ESS segments had significantly thinner fibrous cap thickness compared with higher-ESS segments (128.2±12.3 versus 165.0±12.0 μm; P=0.03), although lipid arc was similar. At follow-up, fibrous cap thickness remained thin in low-ESS segments, whereas it significantly increased in higher-ESS segments (165.0±12.0 to 182.2±14.1 μm; P=0.04). Lipid arc widened only in plaques with low ESS (126.4±15.2° to 141.1±14.0°; P=0.01). After adjustment, baseline ESS was associated with fibrous cap thickness (β, 9.089; 95% confidence interval, 2.539-15.640; P=0.007) and lipid arc (β, -4.381; 95% confidence interval, -6.946 to -1.815; P=0.001) at follow-up.

CONCLUSIONS - Low ESS is significantly associated with baseline high-risk plaque phenotype and progression to higher-risk phenotype at 6 months.

CLINICAL TRIAL REGISTRATION - URL: http://www.clinicaltrials.gov. Unique identifier: NCT01110538.

© 2017 American Heart Association, Inc.