CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Temporal Trends in Transcatheter Aortic Valve Replacement in France: FRANCE 2 to FRANCE TAVI How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) Cardio-Oncology: How New Targeted Cancer Therapies and Precision Medicine Can Inform Cardiovascular Discovery Impact of intravascular ultrasound on the long-term clinical outcomes in the treatment of coronary ostial lesions Heart Failure Outcomes With Volume-Guided Management Novel predictor of target vessel revascularization after coronary stent implantation: Intraluminal intensity of blood speckle on intravascular ultrasound Bridging the Gap Between Epigenetic and Genetic in PAH SPECT and PET in ischemic heart failure Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure Unexpectedly Low Natriuretic Peptide Levels in Patients With Heart Failure

Clinical Trial2017 Aug;10(8). pii: e005455.

JOURNAL:Circ Cardiovasc Interv. Article Link

Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Optical Coherence Tomography and Computational Fluid Dynamics Study

Yamamoto E, Siasos G, Jang IK et al. Keywords: atherosclerosis; coronary vessels; shear stress; tomography, optical coherence

ABSTRACT


BACKGROUND - Low endothelial shear stress (ESS) is associated with plaque progression and vulnerability. To date, changes in plaque phenotype over time in relation to ESS have not been studied in humans. The aim of this study was to investigate whether local ESS can predict subsequent changes to plaque phenotype using optical coherence tomography.


METHODS AND RESULTS - A total of 25 coronary arteries from 20 patients who underwent baseline and 6-month follow-up optical coherence tomography were included. Arteries were divided into serial 3-mm segments, and plaque characteristics were evaluated in each segment. A total of 145 segments were divided into low-ESS group (ESS <1 Pa) and higher-ESS group (ESS ≥1 Pa) based on baseline computational flow dynamics analyses. At baseline, low-ESS segments had significantly thinner fibrous cap thickness compared with higher-ESS segments (128.2±12.3 versus 165.0±12.0 μm; P=0.03), although lipid arc was similar. At follow-up, fibrous cap thickness remained thin in low-ESS segments, whereas it significantly increased in higher-ESS segments (165.0±12.0 to 182.2±14.1 μm; P=0.04). Lipid arc widened only in plaques with low ESS (126.4±15.2° to 141.1±14.0°; P=0.01). After adjustment, baseline ESS was associated with fibrous cap thickness (β, 9.089; 95% confidence interval, 2.539-15.640; P=0.007) and lipid arc (β, -4.381; 95% confidence interval, -6.946 to -1.815; P=0.001) at follow-up.

CONCLUSIONS - Low ESS is significantly associated with baseline high-risk plaque phenotype and progression to higher-risk phenotype at 6 months.

CLINICAL TRIAL REGISTRATION - URL: http://www.clinicaltrials.gov. Unique identifier: NCT01110538.

© 2017 American Heart Association, Inc.