CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Utilization and programming of an automatic MRI recognition feature for cardiac rhythm management devices The HACD4 haplotype as a risk factor for atherosclerosis in males Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion: The DECISION-CTO Trial Development and validation of a simple risk score to predict 30-day readmission after percutaneous coronary intervention in a cohort of medicare patients From Nonclinical Research to Clinical Trials and Patient-registries: Challenges and Opportunities in Biomedical Research Outcomes in Women and Minorities Compared With White Men 1 Year After Everolimus-Eluting Stent Implantation: Insights and Results From the PLATINUM Diversity and PROMUS Element Plus Post-Approval Study Pooled Analysis Cholesterol-Lowering Agents LOX-1 in Atherosclerosis and Myocardial Ischemia: Biology, Genetics, and Modulation

Review Article2017 Sep 26;70(13):1618-1636.

JOURNAL:J Am Coll Cardiol. Article Link

Cardiopulmonary Exercise Testing: What Is its Value?

Guazzi M, Bandera F, Ozemek C et al. Keywords: exercise; gas exchange analysis; heart failure; oxygen consumption

ABSTRACT


Compared with traditional exercise tests, cardiopulmonary exercise testing (CPET) provides a thorough assessment of exercise integrative physiology involving the pulmonary, cardiovascular, muscular, and cellular oxidative systems. Due to the prognostic ability of key variables, CPET applications in cardiology have grown impressively to include all forms of exercise intolerance, with a predominant focus on heart failure with reduced or with preserved ejection fraction. As impaired cardiac output and peripheral oxygen diffusion are the main determinants of the abnormal functional response in cardiac patients, invasive CPET has gained new popularity, especially for diagnosing early heart failure with preserved ejection fraction and exercise-induced pulmonary hypertension. The most impactful advance has recently come from the introduction of CPET combined with echocardiography or CPET imaging, which provides basic information regarding cardiac and valve morphology and function. This review highlights modern CPET use as a single or combined test that allows the pathophysiological bases of exercise limitation to be translated, quite easily, into clinical practice.