CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Can the Vanishing Stent Reappear? Fix the Technique, or Fix the Device? Causes of Mortality After Percutaneous Coronary Intervention: Insights From the VA Clinical Assessment, Reporting, and Tracking Program 2019 ESC Guidelines for the management of patients with supraventricular tachycardia The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC): Developed in collaboration with the Association for European Paediatric and Congenital Cardiology (AEPC)he management of patients with) Long-term Survival following Multivessel Revascularization in Patients with Diabetes (FREEDOM Follow-On Study) Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity Hs-cTroponins for the prediction of recurrent cardiovascular events in patients with established CHD - A comparative analysis from the KAROLA study New AHA/ACC/HRS Guidance on Sudden Cardiac Death Prevention 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study)

Original Research2017 Aug 22;70(8):942-954.

JOURNAL:J Am Coll Cardiol. Article Link

Geometry as a Confounder When Assessing Ventricular Systolic Function: Comparison Between Ejection Fraction and Strain

Stokke TM, Hasselberg NE, Remme EW et al. Keywords: left ventricular geometry; mathematical modeling; myocardial strain

ABSTRACT


BACKGROUND - Preserved left ventricular (LV) ejection fraction (EF) and reduced myocardial strain are reported in patients with hypertrophic cardiomyopathy, ischemic heart disease, diabetes mellitus, and more.


OBJECTIVES - The authors performed a combined mathematical and echocardiographic study to understand the inconsistencies between EF and strains.


METHODS - An analytical equation showing the relationship between EF and the 4 parameters, global longitudinal strain (GLS), global circumferential strain (GCS), wall thickness, and short-axis diameter, was derived from an elliptical LV model. The equation was validated by measuring the 4 parameters by echocardiography in 100 subjects with EF ranging from 16% to 72% and comparing model-predicted EF with measured EF. The effect of the different parameters on EF was explored in the model and compared with findings in the patients.


RESULTS - Calculated EF had very good agreement with measured EF (r = 0.95). The model showed that GCS contributes more than twice as much to EF than GLS. A significant reduction of GLS could be compensated by a small increase of GCS or wall thickness or reduced diameter. The model further demonstrated how EF can be maintained in ventricles with increased wall thickness or reduced diameter, despite reductions in both longitudinal and circumferential shortening. This was consistent with similar EF in 20 control subjects and 20 hypertrophic cardiomyopathy patients with increased wall thickness and reductions in both circumferential and longitudinal shortening (all p < 0.01).


CONCLUSIONS - Reduced deformation despite preserved EF can be explained through geometric factors. Due to geometric confounders, strain better reflects systolic function in patients with preserved EF.


Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.