CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity Frequency, Regional Variation, and Predictors of Undetermined Cause of Death in Cardiometabolic Clinical Trials: A Pooled Analysis of 9259 Deaths in 9 Trials Robotics in percutaneous cardiovascular interventions 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study) Translational Perspective on Epigenetics in Cardiovascular Disease Heart Failure With Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes

Original Research2017 Sep 12;70(11):1339-1348.

JOURNAL:J Am Coll Cardiol. Article Link

Hemodynamic Response to Nitroprusside in Patients With Low-Gradient Severe Aortic Stenosis and Preserved Ejection Fraction

Lloyd JW, Nishimura RA, Eleid MF et al. Keywords: aortic stenosis; catheterization; low gradient; nitroprusside; pathophysiology

ABSTRACT


BACKGROUND - Low-gradient severe aortic stenosis (LGSAS) with preserved ejection fraction (EF) is incompletely understood. The influence of arterial afterload and diastolic dysfunction on the hemodynamic presentation of LGSAS remains unknown.


OBJECTIVES - The authors sought to determine the acute hemodynamic response to sodium nitroprusside in LGSAS with preserved EF.


METHODS - Symptomatic patients with LGSAS and preserved EF underwent cardiac catheterization with comparison of hemodynamic measurements before and after nitroprusside.


RESULTS - Forty-one subjects (25 with low flow [LF], stroke volume index [SVI] ≤35 ml/m2, 16 with normal flow [NF]) were included. At baseline, LF patients had lower total arterial compliance (0.36 ± 0.12 ml/m2/mm Hg vs. 0.48 ± 0.16 ml/m2/mm Hg; p = 0.01) and greater effective arterial elastance (2.77 ± 0.84 mm Hg · m2/ml vs. 1.89 ± 0.82 mm Hg · m2/ml; p = 0.002). In all patients, nitroprusside reduced elastance, left ventricular filling pressures, and pulmonary artery pressures and improved compliance (p < 0.05). Aortic valve area increased to ≥1.0 cm2 in 6 LF (24%) and 4 NF (25%) subjects. Change in SVI with nitroprusside varied inversely to baseline SVI and demonstrated improvement in LF only (3 ± 6 ml/m2; p = 0.02).


CONCLUSIONS - Nitroprusside reduces afterload and left ventricular filling pressures in patients with LGSAS and preserved EF, enabling reclassification to moderate stenosis in 25% of patients. An inverse relationship between baseline SVI and change in SVI with afterload reduction was observed, suggesting that heightened sensitivity to afterload is a significant contributor to LF-LGSAS pathophysiology. These data highlight the utility of afterload reduction in the diagnostic assessment of LGSAS.