CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Long-Term Effect of Ultrathin-Strut Versus Thin-Strut Drug-Eluting Stents in Patients With Small Vessel Coronary Artery Disease Undergoing Percutaneous Coronary Intervention: A Subgroup Analysis of the BIOSCIENCE Randomized Trial Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial LOX-1 in Atherosclerosis and Myocardial Ischemia: Biology, Genetics, and Modulation Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance Timing and Causes of Unplanned Readmissions After Percutaneous Coronary Intervention: Insights From the Nationwide Readmission Database The year in cardiovascular medicine 2020: interventional cardiology Defining High Bleeding Risk in Patients Undergoing Percutaneous Coronary Intervention: A Consensus Document From the Academic Research Consortium for High Bleeding Risk The Year in Cardiovascular Medicine 2020: Coronary Intervention

Review Article2017 Mar 21;69(11):1451-1464.

JOURNAL:J Am Coll Cardiol. Article Link

A Test in Context: E/A and E/e' to Assess Diastolic Dysfunction and LV Filling Pressure

Mitter SS, Shah SJ, Thomas JD. Keywords: Doppler; LV relaxation; echocardiography; heart failure with preserved ejection fraction

ABSTRACT


Diastolic dysfunction represents a combination of impaired left ventricular (LV) relaxation, restoration forces, myocyte lengthening load, and atrial function, culminating in increased LV filling pressures. Current Doppler echocardiography guidelines recommend using early to late diastolic transmitral flow velocity (E/A) to assess diastolic function, and E to early diastolic mitral annular tissue velocity (E/e') to estimate LV filling pressures. Although both parameters have important diagnostic and prognostic implications, they should be interpreted in the context of a patient's age and the rest of the echocardiogram to describe diastolic function and guide patient management. This review discusses: 1) the physiological basis for the E/A and E/e' ratios; 2) their roles in diagnosing diastolic dysfunction; 3) prognostic implications of abnormalities in E/A and E/e'; 4) special scenarios of the E/A and E/e' ratios that are either useful or challenging when evaluating diastolic function clinically; and 5) their usefulness in guiding therapeutic decision making.