CBS 2019
CBSMD教育中心
中 文

IVUS Guidance

Abstract

Recommended Article

Positive remodeling at 3 year follow up is associated with plaque-free coronary wall segment at baseline: a serial IVUS study Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions: Endorsed by the Chinese Society of Cardiology Role of Proximal Optimization Technique Guided by Intravascular Ultrasound on Stent Expansion, Stent Symmetry Index, and Side-Branch Hemodynamics in Patients With Coronary Bifurcation Lesions Long-term health outcome and mortality evaluation after invasive coronary treatment using drug eluting stents with or without the IVUS guidance. Randomized control trial. HOME DES IVUS Subclinical Atherosclerosis Burden by 3D Ultrasound in Mid-Life: The PESA Study Clinical Outcomes Following Intravascular Imaging-Guided Versus Coronary Angiography-Guided Percutaneous Coronary Intervention With Stent Implantation: A Systematic Review and Bayesian Network Meta-Analysis of 31 Studies and 17,882 Patients Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies

Original ResearchMarch, 2018 Volume 71, Issue 11 Supplement

JOURNAL:J Am Coll Cardiol. Article Link

Assessment Of Proximal Left Anterior Descending Artery Size By Intravascular Ultrasound For Optimal Stent Sizing

Shlofmitz E; Matsumura M; Mintz GS et al. Keywords: proximal left anterior descending artery; IVUS; stent sizing

ABSTRACT


BACKGROUND - As the LAD supplies almost half of the myocardium, the proximal LAD (PLAD) should rarely be small. Given the prognostic significance of both the PLAD and minimal stent area, we evaluated PLAD sizes by IVUS.

METHODS - From isolated review of the angiograms from 147 pts who underwent IVUS-guided stenting of de novo PLAD lesions, 4 interventional cardiologists (two of whom were experienced IVUS users) recommended the stent diameter. An IVUS core lab then analyzed the lesion and vessel segments. Based on the smallest mean IVUS vessel diameter (VD), the optimal stent diameter was chosen by downsizing by 0.25-0.5 mm, except in VD >4.0mm.

RESULTS - Mean age was 66 yrs, 30% had diabetes, and 44% presented with ACS. The proximal and distal VDs were 4.5 ± 0.6 mm and 4.0 ± 0.6 mm, respectively. The smallest IVUS VD was 3.9 ± 0.5 mm (occurring in the lesion and distal reference in 44% and 56% of cases). 2% of the smallest VDs were <3.0 mm, and 93% of IVUS-guided optimal stent diameters were ≥3.0 mm (Figure). The mean stent size recommended by the 4 ICs based on angiography was 3.2 ± 0.3 mm; stent size was underestimated by 58% and 65% of experienced and inexperienced IVUS users, respectively. In a logistic model, diabetes was the only predictor for underestimation (OR [95%CI]; 2.48 [1.25- 4.93], P=0.009).

CONCLUSION - Stent diameters in the PLAD are frequently under-estimated based on angiography alone, and should rarely by <3.0 mm. Irrespective of experience, routine IVUS use may result in more appropriate stent sizing in the PLAD.