CBS 2019
CBSMD教育中心
中 文

血管内超声指导

Abstract

Recommended Article

Clinical impact of intravascular ultrasound guidance in drug-eluting stent implantation for unprotected left main coronary disease: pooled analysis at the patient-level of 4 registries Role of Proximal Optimization Technique Guided by Intravascular Ultrasound on Stent Expansion, Stent Symmetry Index, and Side-Branch Hemodynamics in Patients With Coronary Bifurcation Lesions Tissue characterisation of atherosclerotic plaque in the left main: an in vivo intravascular ultrasound radiofrequency data analysis Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: a feasibility, safety, and outcome study Optical Frequency Domain Imaging Versus Intravascular Ultrasound in Percutaneous Coronary Intervention (OPINION Trial) Results From the OPINION Imaging Study Incidence and Clinical Outcomes of Stent Fractures on the Basis of 6,555 Patients and 16,482 Drug-Eluting Stents From 4 Centers Plaque composition by intravascular ultrasound and distal embolization after percutaneous coronary intervention A Randomized Study of Distal Filter Protection Versus Conventional Treatment During Percutaneous Coronary Intervention in Patients With Attenuated Plaque Identified by Intravascular Ultrasound

Original Research2005 Dec 6;46(11):2038-42.

JOURNAL:J Am Coll Cardiol. Article Link

In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis

Rodriguez-Granillo GA\1, García-García HM, Mc Fadden E et al. Keywords: Acute coronary syndrome; intravascular ultrasound-derived thin-cap fibroatheroma; IVUS-Virtual Histology

ABSTRACT


OBJECTIVESThe purpose of this study was to assess the prevalence of intravascular ultrasound (IVUS)-derived thin-cap fibroatheroma (IDTCFA) and its relationship with the clinical presentation using spectral analysis of IVUS radiofrequency data (IVUS-Virtual Histology [IVUS-VH]).


BACKGROUNDThin-cap fibroatheroma lesions are the most prevalent substrate of plaque rupture.

METHODSIn 55 patients, a non-culprit, non-obstructive (<50%) lesion was investigated with IVUS-VH. We classified IDTCFA lesions as focal, necrotic core-rich (> or =10% of the cross-sectional area) plaques being in contact with the lumen; IDTCFA definition required a percent atheroma volume (PAV) > or =40%.

RESULTSAcute coronary syndrome (ACS) (n = 23) patients presented a significantly higher prevalence of IDTCFA than stable (n = 32) patients (3.0 [interquartile range (IQR) 0.0 to 5.0] vs. 1.0 [IQR 0.0 to 2.8], p = 0.018). No relation was found between patient's characteristics such as gender (p = 0.917), diabetes (p = 0.217), smoking (p = 0.904), hypercholesterolemia (p = 0.663), hypertension (p = 0.251), or family history of coronary heart disease (p = 0.136) and the presence of IDTCFA. A clear clustering pattern was seen along the coronaries, with 35 (35.4%), 31 (31.3%), 19 (19.2%), and 14 (14.1%) IDTCFAs in the first 10 mm, 11 to 20 mm, 21 to 30 mm, and > or =31 mm segments, respectively, p = 0.008. Finally, we compared the severity (mean PAV 56.9 +/- 7.4 vs. 54.8 +/- 6.0, p = 0.343) and the composition (mean percent necrotic core 19.7 +/- 4.1 vs. 18.1 +/- 3.0, p = 0.205) of IDTCFAs between stable and ACS patients, and no significant differences were found.

CONCLUSIONSIn this in vivo study, IVUS-VH identified IDTCFA as a more prevalent finding in ACS than in stable angina patients.