CBS 2019
CBSMD教育中心
中 文

血管内超声指导

Abstract

Recommended Article

Comparison of paclitaxel-eluting stents (Taxus) and everolimus-eluting stents (Xience) in left main coronary artery disease with 3 years follow-up (from the ESTROFA-LM registry) Intravascular Ultrasound and Angioscopy Assessment of Coronary Plaque Components in Chronic Totally Occluded Lesions In-stent neoatherosclerosis: a final common pathway of late stent failure Contribution of stent underexpansion to recurrence after sirolimus-eluting stent implantation for in-stent restenosis Long-term outcomes with use of intravascular ultrasound for the treatment of coronary bifurcation lesions Usefulness of minimum stent cross sectional area as a predictor of angiographic restenosis after primary percutaneous coronary intervention in acute myocardial infarction (from the HORIZONS-AMI Trial IVUS substudy) 3-Year Outcomes of the ULTIMATE Trial Comparing Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation The role of integrated backscatter intravascular ultrasound in characterizing bare metal and drug-eluting stent restenotic neointima as compared to optical coherence tomography

Original Research1995 Apr 1;91(7):1959-65.

JOURNAL:Circulation. Article Link

Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions

Mintz GS1, Popma JJ, Pichard AD et al. Keywords: calcification; intravascular ultrasound; coronary angiography

ABSTRACT


BACKGROUNDTarget lesion calcium is a marker for significant coronary artery disease and a determinant of the success of transcatheter therapy.


METHODS AND RESULTSEleven hundred fifty-five native vessel target lesions in 1117 patients were studied by intravascular ultrasound (IVUS) and coronary angiography. The presence, magnitude, location, and distribution of IVUS calcium were analyzed and compared with the detection and classification (none/mild, moderate, and severe) by angiography. Angiography detected calcium in 440 of 1155 lesions (38%): 306 (26%) moderate calcium and 134 (12%) severe. IVUS detected lesion calcium in 841 of 1155 (73%, P < .0001 versus angiography). The mean arc of lesion calcium measured 115 +/- 110 degrees; the mean length measured 3.5 +/- 3.7 mm. Target lesion calcium was only superficial in 48%, only deep in 28%, and both superficial and deep in 24%. The mean arc of superficial calcium measured 85 +/- 108 degrees; the mean length measured 2.4 +/- 3.4 mm. Three hundred seventy-three of 1155 reference segments (32%) contained calcium (P < .0001 compared with lesion site). The mean arc of reference calcium measured 42 +/- 80 degrees; the mean length measured 1.7 +/- 3.6 mm. Only 44 (4%) had reference calcium in the absence of lesion calcium. Angiographic detection and classification of calcium depended on arcs, lengths, location, and distribution of lesion and reference segment calcium. By discriminant analysis, the classification function for predicting angiographic calcium included the arc of target lesion calcium, the arc of superficial calcium, the length of reference segment calcium, and the location of calcium within the lesion. This model correctly predicted the angiographic detection of calcification in 74.4% of lesions and the angiographic classification (none/moderate/severe) of calcium in 62.8% of lesions.

CONCLUSIONSIVUS detected calcium in > 70% of lesions, significantly more often than standard angiography. Although angiography is moderately sensitive for the detection of extensive lesion calcium (sensitivity, 60% and 85% for three- and four-quadrant calcium, respectively), it is less sensitive for the presence of milder degrees.