CBS 2019
CBSMD教育中心
中 文

血管内超声指导

Abstract

Recommended Article

Does calcium burden impact culprit lesion morphology and clinical results? An ADAPT-DES IVUS substudy Intraluminal Intensity of Blood Speckle on Intravascular Ultrasound, a Novel Predictor of Periprocedural Myocardial Injury After Coronary Stenting Subclinical Atherosclerosis Burden by 3D Ultrasound in Mid-Life: The PESA Study Intravascular ultrasound-guided drug-eluting stent implantation is associated with improved clinical outcomes in patients with unstable angina and complex coronary artery true bifurcation lesions The outcomes of intravascular ultrasound-guided drug-eluting stent implantation among patients with complex coronary lesions: a comprehensive meta-analysis of 15 clinical trials and 8,084 patients Impact of the complexity of bifurcation lesions treated with drug-eluting stents: the DEFINITION study (Definitions and impact of complEx biFurcation lesIons on clinical outcomes after percutaNeous coronary IntervenTIOn using drug-eluting steNts) Use of Intravascular Ultrasound Imaging in Percutaneous Coronary Intervention to Treat Left Main Coronary Artery Disease In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis

Clinical TrialVolume 10, Issue 8, August 2017, Pages 869-879

JOURNAL:JACC Cardiovasc Imaging. Article Link

In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography

Wang X, Matsumura M, Mintz GS et al. Keywords: angiography; calcification; intravascular ultrasound; optical coherence tomography

ABSTRACT

OBJECTIVES- The aim of this study was to evaluate optical coherence tomography (OCT) and intravascular ultrasound (IVUS) versus coronary angiography in the assessment of target lesion calcification and its effect on stent expansion.


BACKGROUD - IVUS is more sensitive than angiography in the detection of coronary artery calcium, but the relationship among IVUS, OCT, and angiography has not been studied.


METHODS - Overall, 440 lesions (440 patients with stable angina) underwent OCT- and IVUS-guided stent implantation. Coronary calcification was evaluated using: 1) angiography; 2) IVUS (maximum calcium angle and the surface pattern); and 3) OCT (mean and maximum calcium angle, calcium length, and maximum calciumthickness).


RESULTS - Median patient age was 66 years, and 82.5% were men. Among 440 lesions, calcium was detected by angiography in 40.2%, IVUS in 82.7%, and OCT in 76.8%. The maximum calcium angle, maximum calciumthickness, and calcium length by OCT or IVUS increased in relation to the increasing severity of angiographically visible calcium. In 13.2% of lesions with IVUS-detected calcium, calcium was either not visible or was underestimated (>90° smaller maximum arc) by OCT mostly due to superficial OCT plaque attenuation. In 21.6% of lesions with IVUS calcium angle >180°, angiography did not detect any calcium; these lesions had thinner and shorter calcium deposits as assessed using OCT, and final minimum stent area was larger compared to those with angiographically visible calcium. In lesions with thinner calcium deposits by OCT, IVUS detected a smooth surface with reverberations whereas thick calcium deposits were associated with an irregular surface without reverberations.


CONCLUSIONS - Angiographic detection of target lesion coronary calcium (compared to intravascular imaging) has not changed in the past 2 decades, and angiographically invisible calcium (only detectable by IVUS or OCT) did not appear to inhibit stent expansion.