CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Complete Revascularization Versus Culprit Lesion Only in Patients With ST-Segment Elevation Myocardial Infarction and Multivessel Disease: A DANAMI-3-PRIMULTI Cardiac Magnetic Resonance Substudy Bare metal versus drug eluting stents for ST-segment elevation myocardial infarction in the TOTAL trial Short Duration of DAPT Versus De-Escalation After Percutaneous Coronary Intervention for Acute Coronary Syndromes Oxygen Therapy in Suspected Acute Myocardial Infarction Door to Balloon Time: Is There a Point That Is Too Short? Outcomes of off- and on-hours admission in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: A retrospective observational cohort study Association of Thrombus Aspiration With Time and Mortality Among Patients With ST-Segment Elevation Myocardial Infarction: A Post Hoc Analysis of the Randomized TOTAL Trial Percutaneous coronary intervention reduces mortality in myocardial infarction patients with comorbidities: Implications for elderly patients with diabetes or kidney disease

Original Research2018 Jan 7;39(2):102-110.

JOURNAL:Eur Heart J. Article Link

Long-term survival and causes of death in patients with ST-elevation acute coronary syndrome without obstructive coronary artery disease

Andersson HB, Pedersen F, Engstrøm T et al. Keywords: Causes of death; Non-obstructive coronary artery disease ; ST-elevation acute coronary syndrome ; ST-elevation myocardial infarction ; Survival

ABSTRACT


AIMS - We aimed to study survival and causes of death in patients with ST-elevation acute coronary syndrome (STE-ACS) with and without obstructive coronary artery disease (CAD).


METHODS AND RESULTS - We included 4793 consecutive patients with STE-ACS triaged for acute coronary angiography at a large cardiac invasive centre (2009-2014). Of these, 88% had obstructive CAD (stenosis ≥50%), 6% had non-obstructive CAD (stenosis 1-49%), and 5% had normal coronary arteries. Patients without obstructive CAD were younger and more often female with fewer cardiovascular risk factors. Median follow-up time was 2.6 years. Compared with patients with obstructive CAD, the short-term hazard of death (≤30 days) was lower in both patients with non-obstructive CAD [hazard ratio (HR) 0.49, 95% confidence interval (CI) 0.27-0.89, P = 0.018] and normal coronary arteries (HR 0.31, 95% CI 0.11-0.83, P = 0.021). In contrast, the long-term hazard of death (>30 days) was similar in patients with non-obstructive CAD (HR 1.15, 95% CI 0.77-1.72, P = 0.487) and higher in patients with normal coronary arteries (HR 2.44, 95% CI 1.58-3.76, P < 0.001), regardless of troponin levels. Causes of death were cardiovascular in 70% of patients with obstructive CAD, 38% with non-obstructive CAD, and 32% with normal coronary arteries. Finally, patients without obstructive CAD had lower survival compared with an age and sex matched general population.

CONCLUSIONS - STE-ACS patients without obstructive CAD had a long-term risk of death similar to or higher than patients with obstructive CAD. Causes of death were less often cardiovascular. This suggests that STE-ACS patients without obstructive CAD warrant medical attention and close follow-up.

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.