CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

5-Year Prognostic Value of Quantitative Versus Visual MPI in Subtle Perfusion Defects: Results From REFINE SPECT Multivessel Percutaneous Coronary Intervention in Patients With ST-Segment Elevation Myocardial Infarction With Cardiogenic Shock Revascularization Strategies in STEMI with Multivessel Disease: Deciding on Culprit Versus Complete-Ad Hoc or Staged Acute Myocardial Infarction Ticagrelor or Prasugrel in Patients with Acute Coronary Syndromes Prevalence of anginal symptoms and myocardial ischemia and their effect on clinical outcomes in outpatients with stable coronary artery disease: data from the International Observational CLARIFY Registry 2015 ACC/AHA/SCAI Focused Update on Primary Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction Bare metal versus drug eluting stents for ST-segment elevation myocardial infarction in the TOTAL trial

Original ResearchJune 2019 DOI: 10.1016/j.jcmg.2019.02.028

JOURNAL:JACC: Cardiovascular Imaging Article Link

5-Year Prognostic Value of Quantitative Versus Visual MPI in Subtle Perfusion Defects: Results From REFINE SPECT

Y Otaki, J Betancur, T Sharir et al. Keywords: prognostic value; SPECT; visual MPI; stress total perfusion deficit; MACE

ABSTRACT

OBJECTIVES- This study compared the ability of automated myocardial perfusion imaging analysis to predict major adverse cardiac events (MACE) to that of visual analysis.

 

BACKGROUND- Quantitative analysis has not been compared with clinical visual analysis in prognostic studies.

 

METHODS- A total of 19,495 patients from the multicenter REFINE SPECT (REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT) study (64 ± 12 years of age, 56% males) undergoing stress Tc-99m-labeled single-photon emission computed tomography (SPECT) myocardial perfusion imaging were followed for 4.5 ± 1.7 years for MACE. Perfusion abnormalities were assessed visually and categorized as normal, probably normal, equivocal, or abnormal. Stress total perfusion deficit (TPD), quantified automatically, was categorized as TPD = 0%, TPD >0% to <1%, 1% to <3%, 3% to <5%, 5% to 10%, or TPD >10%. MACE consisted of death, nonfatal myocardial infarction, unstable angina, or late revascularization (>90 days). Kaplan-Meier and Cox proportional hazards analyses were performed to test the performance of visual and quantitative assessments in predicting MACE.

 

RESULTS - During follow-up examinations, 2,760 (14.2%) MACE occurred. MACE rates increased with worsening of visual assessments, that is, the rate for normal MACE was 2.0%, 3.2% for probably normal, 4.2% for equivocal, and 7.4% for abnormal (all p < 0.001). MACE rates increased with increasing stress TPD from 1.3% for the TPD category of 0% to 7.8% for the TPD category of >10% (p < 0.0001). The adjusted hazard ratio (HR) for MACE increased even in equivocal assessment (HR: 1.56; 95% confidence interval [CI]: 1.37 to 1.78) and in the TPD category of 3% to <5% (HR: 1.74; 95% CI: 1.41 to 2.14; all p < 0.001). The rate of MACE in patients visually assessed as normal still increased from 1.3% (TPD = 0%) to 3.4% (TPD 5%) (p < 0.0001).

 

CONCLUSIONS - Quantitative analysis allows precise granular risk stratification in comparison to visual reading, even for cases with normal clinical reading.