CBS 2019
CBSMD教育中心
中 文

Optical Coherence Tomography

Abstract

Recommended Article

Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention: Outcomes From the Pan-London PCI Cohort Pancoronary Plaque Characteristics in STEMI Caused by Culprit Plaque Erosion Versus Rupture: 3-Vessel OCT Study Fate of post-procedural malapposition of everolimus-eluting polymeric bioresorbable scaffold and everolimus-eluting cobalt chromiummetallic stent in human coronary arteries: sequential assessment with optical coherence tomography in ABSORB Japan trial Uncovered Culprit Plaque Ruptures in Patients With ST-Segment Elevation Myocardial Infarction Assessed by Optical Coherence Tomography and Intravascular Ultrasound With iMap Coronary Atherosclerosis T1-Weighed Characterization With Integrated Anatomical Reference: Comparison With High-Risk Plaque Features Detected by Invasive Coronary Imaging Novel 3-Dimensional Vessel and Scaffold Reconstruction Methodology for the Assessment of Strut-Level Wall Shear Stress After Deployment of Bioresorbable Vascular Scaffolds From the ABSORB III Imaging Substudy Impact of an optical coherence tomography guided approach in acute coronary syndromes: A propensity matched analysis from the international FORMIDABLE-CARDIOGROUP IV and USZ registry Neoatherosclerosis in Patients With Coronary Stent Thrombosis: Findings From Optical Coherence Tomography Imaging (A Report of the PRESTIGE Consortium)

Clinical Trial2017 Nov 15;120(10):1772-1779

JOURNAL:Am J Cardiol. Article Link

Intracoronary Optical Coherence Tomography-Derived Virtual Fractional Flow Reserve for the Assessment of Coronary Artery Disease

Seike F, Uetani T, Nishimura K et al. Keywords: Optical Coherence Tomography-Derived Virtual Fractional Flow Reserve

ABSTRACT


Fractional flow reserve (FFR) is widely used for the assessment of myocardial ischemia. Optical coherence tomography (OCT) provides accurate visualization of coronary artery morphology. The aim of this study was to investigate the relation between FFR and OCT-derived FFR. We retrospectively analyzed 31 lesions (25 left anterior descending arteries, 2 left circumflex arteries, and 4 right coronary arteries) in 31 patients with moderate-to-severe coronary stenosis, who underwent OCT and FFR measurements simultaneously. OCT-derived FFR was calculated by the original algorithm, which was calculated using the following equation based on fluid dynamics: ΔP = FV + SV2, where V is the flow velocity, F is the coefficient of pressure loss because of viscous friction (Poiseuille resistance), and S is the coefficient of local pressure loss because of abrupt enhancement (flow separation). Mean values of % diameter stenosis by quantitative coronary angiography and FFR were 55.2 ± 14.0% and 0.70 ± 0.14, respectively. OCT-derived FFR showed a stronger linear correlation with FFR measurements (r = 0.89, p <0.001; root mean square error = 0.062 FFR units) than quantitative coronary angiography % diameter stenosis (r = -0.65, p <0.001), OCT measurements of minimum lumen area (r = 0.68, p <0.001), and % area stenosis (r = -0.70, p <0.001). OCT-derived FFR has the potential to become an alternative method for the assessment of functional myocardial ischemia, and may elucidate the relation between coronary morphology and FFR.

Copyright © 2017 Elsevier Inc. All rights reserved.