CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Cutoff Value and Long-Term Prediction of Clinical Events by FFR Measured Immediately After Implantation of a Drug-Eluting Stent in Patients With Coronary Artery Disease: 1- to 3-Year Results From the DKCRUSH VII Registry Study Randomized Comparison of FFR-Guided and Angiography-Guided Provisional Stenting of True Coronary Bifurcation Lesions: The DKCRUSH-VI Trial (Double Kissing Crush Versus Provisional Stenting Technique for Treatment of Coronary Bifurcation Lesions VI) Prognostic Value of Fractional Flow Reserve Measured Immediately After Drug-Eluting Stent Implantation Influence of Local Myocardial Damage on Index of Microcirculatory Resistance and Fractional Flow Reserve in Target and Nontarget Vascular Territories in a Porcine Microvascular Injury Model FFR-guided multivessel stenting reduces urgent revascularization compared with infarct-related artery only stenting in ST-elevation myocardial infarction: A meta-analysis of randomized controlled trials Clinical Outcomes and Cost-Effectiveness of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients With Stable Coronary Artery Disease: Three-Year Follow-Up of the FAME 2 Trial (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) Diagnostic Accuracy of Angiography-Based Quantitative Flow Ratio Measurements for Online Assessment of Coronary Stenosis Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial

Original ResearchVolume 11, Issue 8, April 2018

JOURNAL:JACC Cardiovasc Interv. Article Link

Influence of Local Myocardial Damage on Index of Microcirculatory Resistance and Fractional Flow Reserve in Target and Nontarget Vascular Territories in a Porcine Microvascular Injury Model

JM Lee, HK Kim, KS Lim et al. Keywords: coronary artery disease; instantaneous wave-Free Ratio; physiological lesion assessment; stenosis

ABSTRACT

OBJECTIVES - The aim of this study was to investigate the influence of microvascular damage in one vessel territory on invasively measured physiological parameters in the other vessel, using a porcine microvascular damage model.

BACKGROUND - Although fractional flow reserve (FFR)-guided decision-making for the nonculprit stenosis in patients with acute myocardial infarction has been reported to be better than angiography-guided revascularization, there have been debates regarding the influence of microvascular dysfunction on measured FFR in nonculprit vessels.

METHODS - In Yorkshire swine, microvascular damage was induced with selective intracoronary injection of microspheres (100 μm × 105 each) into the left anterior descending artery (LAD). Coronary stenosis was created in both the LAD and the left circumflex artery (LCx) using balloon catheters. Coronary physiological changes were assessed with index of microcirculatory resistance (IMR) and FFR at baseline and at each subsequent injection of microsphere up to a fifth dose in both the LAD and LCx. Measurements were repeated 5 times at each stage, and a total of 424 measurements were made in 12 Yorkshire swine models.

RESULTS - The median area stenosis in LAD and LCx was 48.1% (interquartile range: 40.8% to 50.4%) and 47.9% (interquartile range: 31.1% to 62.9%), respectively. At baseline, FFR in the LAD was lower than that in the LCx (0.89 ± 0.01 and 0.94 ± 0.01; p < 0.001). There was no difference in the IMR (18.4 ± 5.8 U and 17.9 ± 1.2 U; p = 0.847). With repeated injections of microspheres, IMR in LAD was significantly increased, up to 77.7 ± 15.7 U (p < 0.001). Given the same stenosis, FFR in the LAD was also significantly increased, up to 0.98 ± 0.01 along with IMR increase (p < 0.001). Conversely, IMR and FFR were not changed in the LCx throughout repeated injury to the LAD territory (p = 0.105 and p = 0.286 for IMR and FFR, respectively). The increase in LAD IMR was mainly driven by the increase in hyperemic mean transit time (p < 0.001).

CONCLUSIONS - In Yorkshire swine models, local microvascular damage increased both FFR and IMR in a vessel supplying target myocardial territory. However, IMR and FFR were maintained in the other vessel. These physiological results in swine support the concept that FFR measurement might provide useful information for evaluating nonculprit lesions in clinical settings involving significant acute myocardial injury.