CBS 2019
CBSMD教育中心
中 文

急性冠脉综合征

Abstract

Recommended Article

Silent Myocardial Infarction and Long-Term Risk of Heart Failure: The ARIC Study Comparison of hospital variation in acute myocardial infarction care and outcome between Sweden and United Kingdom: population based cohort study using nationwide clinical registries Management of ST-segment elevation myocardial infarction in predominantly rural central China: A retrospective observational study Acute Myocardial Infarction Sex Differences in Clinical Profiles and Quality of Care Among Patients With ST-Segment Elevation Myocardial Infarction From 2001 to 2011: Insights From the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective Study Bare metal versus drug eluting stents for ST-segment elevation myocardial infarction in the TOTAL trial National Quality Assessment of Early Clopidogrel Therapy in Chinese Patients With Acute Myocardial Infarction (AMI) in 2006 and 2011: Insights From the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective AMI Study Nonculprit Stenosis Evaluation Using Instantaneous Wave-Free Ratio in Patients With ST-Segment Elevation Myocardial Infarction

Original Research2015 Mar 1;115(5):581-6.

JOURNAL:Am J Cardiol. Article Link

Location of the culprit coronary lesion and its association with delay in door-to-balloon time (from a multicenter registry of primary percutaneous coronary intervention)

Kuno T, Kohsaka S, Numasawa Y et al. Keywords: culprit coronary lesion; delay in door-to-balloon time;primary percutaneous coronary intervention

ABSTRACT

Current guidelines recommend shorter door-to-balloon times (DBTs) (<90 minutes) for patients with ST-elevation myocardial infarction (STEMI). Clinical factors, including patient or hospital characteristics, associated with prolonged DBT have been identified, but angiographic variables such as culprit lesion location have not been thoroughly investigated. We aimed to evaluate the effect of culprit artery location on DBT of patients with STEMI who underwent percutaneous coronary intervention (PCI). Data were analyzed from 1,725 patients with STEMI who underwent PCI from August 2008 to March 2014 at 16 Japanese hospitals. Patients were divided into 3 groups according to culprit artery location, right coronary artery (RCA), left anterior descending artery (LAD), and left circumflex artery (LC), and associations with DBT were assessed. The LC group had a trend toward a longer DBT among the 3 groups (97.1 [RCA] vs 98.1 [LAD] vs 105.1 [LC] minutes; p = 0.058). In-hospital mortality was also significantly higher in patients with a left coronary artery lesion (3.5% [RCA] vs 6.3% [LAD] vs 5.4% [LC]; p = 0.041). In-hospital mortality for patients with DBT >90 minutes was significantly higher compared with patients with DBT ≤90 minutes (6.5% vs 3.6%; p = 0.006). Multivariate logistic regression analysis revealed that the LC location was an independent predictor for DBT >90 minutes (odds ratio, 1.45; 95% confidence interval, 1.04 to 2.01; p = 0.028). In conclusion, LC location was an independent predictor of longer DBT. The difficulties in diagnosing LC-related STEMI need further evaluation.