CBS 2019
中 文



Recommended Article

A systematic review of factors predicting door to balloon time in ST-segment elevation myocardial infarction treated with percutaneous intervention Correlation and prognostic role of neutrophil to lymphocyte ratio and SYNTAX score in patients with acute myocardial infarction treated with percutaneous coronary intervention: A six-year experience Pharmacoinvasive and Primary Percutaneous Coronary Intervention Strategies in ST-Elevation Myocardial Infarction (from the Mayo Clinic STEMI Network) Oxygen Therapy in Suspected Acute Myocardial Infarction Symptom onset-to-balloon time and mortality in the first seven years after STEMI treated with primary percutaneous coronary intervention Causes of delay and associated mortality in patients transferred with ST-segment-elevation myocardial infarction Nonsystem reasons for delay in door-to-balloon time and associated in-hospital mortality: a report from the National Cardiovascular Data Registry Aggressive Measures to Decrease

Original Research2015 Dec;90(12):1614-22.

JOURNAL:Mayo Clin Proc. Article Link

Aggressive Measures to Decrease

Fanari Z, Abraham N, Kolm P et al. Keywords: Door to Balloon Time; Incidence of Unnecessary Cardiac Catheterization; Quality Improvement


OBJECTIVE - To assess the impact of an aggressive protocol to decrease the time from hospital arrival to onset of reperfusion therapy ("door to balloon [DTB] time") on the incidence of false-positive (FP) diagnosis of ST-segment elevation myocardial infarction (STEMI) and in-hospital mortality.

PATIENTS AND METHODS - The study population included 1031 consecutive patients with presumed STEMI and confirmed ST-segment elevation who underwent emergent catheterization between July 1, 2008, and December 1, 2012, On July 1, 2009, we instituted an aggressive protocol to reduce DTB time. A quality improvement (QI) initiative was introduced on January 1, 2011, to maintain short DTB while improving outcomes. Outcomes were compared before and after the initiation of the DTB time protocol and similarly before and after the QI initiative. Outcomes were DTB time, the incidence of FP-STEMI, and in-hospital mortality. A review of the emergency catheterization database for the 10-year period from January 1, 2001, through December 31, 2010, was performed for historical comparison.

RESULTS - Of the 1031 consecutive patients with presumed STEMI who were assessed, 170 were considered to have FP-STEMI. The median DTB time decreased significantly from 76 to 61 minutes with the aggressive DTB time protocol (P=.001), accompanied by an increase of FP-STEMI (7.7% vs 16.5%; P=.02). Although a nonsignificant reduction of in-hospital mortality occurred in patients with true-positive STEMI (P=.60), a significant increase in in-hospital mortality was seen in patients with FP-STEMI (P=.03). After the QI initiative, a shorter DTB time (59 minutes) was maintained while decreasing FP-STEMI in-hospital mortality.

CONCLUSION - Aggressive measures to reduce DTB time were associated with an increased incidence of FP-STEMI and FP-STEMI in-hospital mortality. Efforts to reduce DTB time should be monitored systematically to avoid unnecessary procedures that may delay other appropriate therapies in critically ill patients.

Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.