CBS 2019
CBSMD教育中心
中 文

急性冠脉综合征

Abstract

Recommended Article

The Potential Use of the Index of Microcirculatory Resistance to Guide Stratification of Patients for Adjunctive Therapy in Acute Myocardial Infarction Application of High-Sensitivity Troponin in Suspected Myocardial Infarction Incidence, predictors, and outcomes of DAPT disruption due to non-compliance vs. bleeding after PCI: insights from the PARIS Registry Transition of Macrophages to Fibroblast-Like Cells in Healing Myocardial Infarction TACIT (High Sensitivity Troponin T Rules Out Acute Cardiac Insufficiency Trial): An Observational Study to Identify Acute Heart Failure Patients at Low Risk for Rehospitalization or Mortality Single-Molecule hsTnI and Short-Term Risk in Stable Patients With Chest Pain Red Cell Distribution Width in Patients with Diabetes and Myocardial Infarction: an analysis from the EXAMINE trial Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction

Clinical Trial2020 Aug 18;76(7):812-824.

JOURNAL:J Am Coll Cardiol. Article Link

Optimum Blood Pressure in Patients With Shock After Acute Myocardial Infarction and Cardiac Arrest

K Ameloot, P Jakkula, J Hästbacka et al. Keywords: acute myocardial infarction; cardiac arrest; cardiogenic shock

ABSTRACT

BACKGROUND - In patients with shock after acute myocardial infarction (AMI), the optimal level of pharmacologic support is unknown. Whereas higher doses may increase myocardial oxygen consumption and induce arrhythmias, diastolic hypotension may reduce coronary perfusion and increase infarct size.

 

OBJECTIVES - This study aimed to determine the optimal mean arterial pressure (MAP) in patients with AMI and shock after cardiac arrest.

 

METHODS - This study used patient-level pooled analysis of post-cardiac arrest patients with shock after AMI randomized in the Neuroprotect (Neuroprotective Goal Directed Hemodynamic Optimization in Post-cardiac Arrest Patients; NCT02541591) and COMACARE (Carbon Dioxide, Oxygen and Mean Arterial Pressure After Cardiac Arrest and Resuscitation; NCT02698917) trials who were randomized to MAP 65 mm Hg or MAP 80/85 to 100 mm Hg targets during the first 36 h after admission. The primary endpoint was the area under the 72-h high-sensitivity troponin-T curve.

 

RESULTS - Of 235 patients originally randomized, 120 patients had AMI with shock. Patients assigned to the higher MAP target (n = 58) received higher doses of norepinephrine (p = 0.004) and dobutamine (p = 0.01) and reached higher MAPs (86 ± 9 mm Hg vs. 72 ± 10 mm Hg, p < 0.001). Whereas admission hemodynamics and angiographic findings were all well-balanced and revascularization was performed equally effective, the area under the 72-h high-sensitivity troponin-T curve was lower in patients assigned to the higher MAP target (median: 1.14 μg.72 h/l [interquartile range: 0.35 to 2.31 μg.72 h/l] vs. median: 1.56 μg.72 h/l [interquartile range: 0.61 to 4.72 μg. 72 h/l]; p = 0.04). Additional pharmacologic support did not increase the risk of a new cardiac arrest (p = 0.88) or atrial fibrillation (p = 0.94). Survival with good neurologic outcome at 180 days was not different between both groups (64% vs. 53%, odds ratio: 1.55; 95% confidence interval: 0.74 to 3.22).

 

CONCLUSIONS - In post-cardiac arrest patients with shock after AMI, targeting MAP between 80/85 and 100 mm Hg with additional use of inotropes and vasopressors was associated with smaller myocardial injury.