CBS 2019
CBSMD教育中心
中 文

急性冠脉综合征

Abstract

Recommended Article

Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): an open-label, randomised controlled trial Door to Balloon Time: Is There a Point That Is Too Short? Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial Prognostic impact of atrial fibrillation in cardiogenic shock complicating acute myocardial infarction: a substudy of the IABP-SHOCK II trial Prognostic impact of non-culprit chronic total occlusions in infarct-related cardiogenic shock: results of the randomised IABP-SHOCK II trial A case of influenza type a myocarditis that presents with ST elevation MI, cardiogenic shock, acute renal failure, and rhabdomyolysis and with rapid recovery after treatment with oseltamivir and intra-aortic balloon pump support The Wait for High-Sensitivity Troponin Is Over—Proceed Cautiously

Clinical Trial2018 Jan 25;378(4):345-353.

JOURNAL:N Engl J Med. Article Link

Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection

Kwong JC, Schwartz KL, Campitelli MA et al. Keywords: respiratory infections; influenza; acute myocardial infarction

ABSTRACT


BACKGROUND - Acute myocardial infarction can be triggered by acute respiratory infections. Previous studies have suggested an association between influenza and acute myocardial infarction, but those studies used nonspecific measures of influenza infection or study designs that were susceptible to bias. We evaluated the association between laboratory-confirmed influenza infection and acute myocardial infarction.


METHODS - We used the self-controlled case-series design to evaluate the association between laboratory-confirmed influenza infection and hospitalization for acute myocardial infarction. We used various high-specificity laboratory methods to confirm influenza infection in respiratory specimens, and we ascertained hospitalization for acute myocardial infarction from administrative data. We defined the "risk interval" as the first 7 days afterrespiratory specimen collection and the "control interval" as 1 year before and 1 year after the risk interval.


RESULTS - We identified 364 hospitalizations for acute myocardial infarction that occurred within 1 year before and 1 year after a positive test result for influenza. Of these, 20 (20.0 admissions per week) occurred during the risk interval and 344 (3.3 admissions per week) occurred during the control interval. The incidence ratio of an admission for acute myocardial infarction during the risk interval as compared with the control interval was 6.05 (95% confidence interval [CI], 3.86 to 9.50). No increased incidence was observed after day 7. Incidence ratios for acute myocardial infarction within 7 days after detection of influenza B, influenza A, respiratory syncytial virus, and other viruses were 10.11 (95% CI, 4.37 to 23.38), 5.17 (95% CI, 3.02 to 8.84), 3.51 (95% CI, 1.11 to 11.12), and 2.77 (95% CI, 1.23 to 6.24), respectively.


CONCLUSIONS - We found a significant association between respiratory infections, especially influenza, and acute myocardial infarction. (Funded by the Canadian Institutes of Health Research and others.)