CBS 2019
CBSMD教育中心
中 文

血流储备分数

Abstract

Recommended Article

Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics Coronary CT Angiographic and Flow Reserve-Guided Management of Patients With Stable Ischemic Heart Disease The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes Sex Differences in Instantaneous Wave-Free Ratio or Fractional Flow Reserve–Guided Revascularization Strategy Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial Prognostic Implication of Functional Incomplete Revascularization and Residual Functional SYNTAX Score in Patients With Coronary Artery Disease Influence of Local Myocardial Damage on Index of Microcirculatory Resistance and Fractional Flow Reserve in Target and Nontarget Vascular Territories in a Porcine Microvascular Injury Model

Original ResearchVolume 12, Issue 20, October 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Sex Differences in Instantaneous Wave-Free Ratio or Fractional Flow Reserve–Guided Revascularization Strategy

CH Kim, B-K Koo, H-M Dehbi et al. Keywords: clinical outcome; fractional flow reserve; instantaneous wave-free ratio; gender difference

ABSTRACT


OBJECTIVES - This study sought to evaluate sex differences in procedural characteristics and clinical outcomes of instantaneous wave-free ratio (iFR)and fractional flow reserve (FFR)guided revascularization strategies.

 

BACKGROUND - An iFR-guided strategy has shown a lower revascularization rate than an FFR-guided strategy, without differences in clinical outcomes.

 

METHODS - This is a post hoc analysis of the DEFINE-FLAIR (Functional Lesion Assessment of Intermediate stenosis to guide Revascularization) study, in which 601 women and 1,891 men were randomized to iFR- or FFR-guided strategy. The primary endpoint was 1-year major adverse cardiac events (MACE), a composite of all-cause death, nonfatal myocardial infarction, or unplanned revascularization.

 

RESULTS - Among the entire population, women had a lower number of functionally significant lesions per patient (0.31 ± 0.51 vs. 0.43 ± 0.59; p < 0.001) and less frequently underwent revascularization than men (42.1% vs. 53.1%; p < 0.001). There was no difference in mean iFR value according to sex (0.91 ± 0.09 vs. 0.91 ± 0.10; p = 0.442). However, the mean FFR value was lower in men than in women (0.83 ± 0.09 vs. 0.85 ± 0.10; p = 0.001). In men, an FFR-guided strategy was associated with a higher rate of revascularization than an iFR-guided strategy (57.1% vs. 49.3%; p = 0.001), but this difference was not observed in women (41.4% vs. 42.6%; p = 0.757). There was no difference in MACE rates between iFR- and FFR-guided strategies in both women (5.4% vs. 5.6%, adjusted hazard ratio: 1.10; 95% confidence interval: 0.50 to 2.43; p = 0.805) and men (6.6% vs. 7.0%, adjusted hazard ratio: 0.98; 95% confidence interval: 0.66 to 1.46; p = 0.919).

 

CONCLUSIONS - An FFR-guided strategy was associated with a higher rate of revascularization than iFR-guided strategy in men, but not in women. However, iFR- and FFR-guided strategies showed comparable clinical outcomes, regardless of sex. (Functional Lesion Assessment of Intermediate Stenosis to guide Revascularization [DEFINE-FLAIR]; NCT02053038)