CBS 2019
CBSMD教育中心
中 文

肺动脉高压

Abstract

Recommended Article

Pulmonary Artery Denervation: A New, Long-Awaited Interventional Treatment for Combined Pre- and Post-Capillary Pulmonary Hypertension? Pulmonary hypertension is associated with an increased incidence of NAFLD: A retrospective cohort study of 18,910 patients Right ventricular expression of NT-proBNP adds predictive value to REVEAL score in patients with pulmonary arterial hypertension A Notch3-Marked Subpopulation of Vascular Smooth Muscle Cells Is the Cell of Origin for Occlusive Pulmonary Vascular Lesions. The Regulation of Pulmonary Vascular Tone by Neuropeptides and the Implications for Pulmonary Hypertension Percutaneous Pulmonary Angioplasty for Patients With Takayasu Arteritis and Pulmonary Hypertension 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension Treatment Effects of Pulmonary Artery Denervation for Pulmonary Arterial Hypertension Stratified by REVEAL Risk Score: Results from PADN-CFDA Trial

Clinical Trial2018 May 9;19(1):87.

JOURNAL:Respir Res. Article Link

Genetic analyses in a cohort of 191 pulmonary arterial hypertension patients

Yang H, Zeng Q, Zhou Z et al. Keywords: Genetic analyses; Genotype-phenotype correlation; Pulmonary arterial hypertension

ABSTRACT


BACKGROUNDPulmonary arterial hypertension (PAH) is a progressive and fatal disorder associated with high pulmonary artery pressure. Genetic testing enables early diagnosis and offers an opportunity for family screening. To identify genetic mutations and help make a precise diagnosis, we performed genetic testing in 191 probands with PAH and tried to analyze the genotype-phenotype correlation.


METHODS - Initially, PAH samples (n = 119) were submitted to BMPR2 screening using Sanger sequencing. Later, we developed a PAH panel test to identify causal mutations in 13 genes related to PAH and tried to call BMPR2 copy number variations (CNVs) with the panel data. Multiplex ligation-dependent probe amplification (MLPA) was used to search for CNVs in BMPR2, ACVRL1 and ENG. Notably, EIF2AK4 gene was also involved in the panel, which allowed to distinguish pulmonary veno-occlusive disease (PVOD)/pulmonary capillary hemangiomatosis (PCH) patients from idiopathic PAH (IPAH). Characteristics of patients were compared using t test for continuous variables.

RESULTS - Pathogenic BMPR2 mutations were detected most frequently in 32 (17.9%) IPAH and 5 (41.7%) heritable PAH (HPAH) patients by sequencing, and 12 BMPR2 CNVs called from the panel data were all successfully confirmed by MLPA analysis. In addition, homozygous or compound heterozygous EIF2AK4 mutations were identified in 6 patients, who should be corrected to a diagnosis of PVOD/PCH. Genotype-phenotype correlation analysis revealed that PAH patients with BMPR2 mutations were younger at diagnosis (27.2y vs. 31.6y, p = 0.0003) and exhibited more severe pulmonary hemodynamic impairment and a worse cardiac index compared with those without BMPR2 mutations.

CONCLUSIONS - The panel assay represented a highly valuable tool in PAH genetic testing, not only for the detection of small sequence alterations, but also for an indication of BMPR2 CNVs, which had implications for the specific samples to perform further MLPA assay. Analyses of PAH causal genes have a great help to clinical diagnosis and deep implications in disease treatment.