CBS 2019
CBSMD教育中心
中 文

Pulmonary Hypertension

Abstract

Recommended Article

Pulmonary Arterial Hypertension With Abnormal V/Q Single-Photon Emission Computed Tomography Intravascular Ultrasound Pulmonary Artery Denervation to Treat Pulmonary Arterial Hypertension (TROPHY1): Multicenter, Early Feasibility Study Pulmonary Artery Denervation: An Alternative Therapy for Pulmonary Hypertension Sildenafil added to pirfenidone in patients with advanced idiopathic pulmonary fibrosis and risk of pulmonary hypertension: A Phase IIb, randomised, double-blind, placebo-controlled study - Rationale and study design Left main coronary artery compression in pulmonary hypertension rhACE2 Therapy Modifies Bleomycin-Induced Pulmonary Hypertension via Rescue of Vascular Remodeling Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease Pulmonary Artery Denervation for Patients With Residual Pulmonary Hypertension After Pulmonary Endarterectomy

Original Research2018 Jul 3:180120.

JOURNAL:Radiology. Article Link

Identifying At-Risk Patients with Combined Pre- and Postcapillary Pulmonary Hypertension Using Interventricular Septal Angle at Cardiac MRI

Johns CS, Wild JM, Rajaram S et al. Keywords: combined pre- and postcapillary pulmonary hypertension;

ABSTRACT


Purpose To assess interventricular septal (IVS) angle in the identification of combined pre- and postcapillary pulmonary hypertension (Cpc-PH) in patients with pulmonary hypertension (PH) due to left-sided heart disease. Materials and Methods In this retrospective study, consecutive, incident patients suspected of having PH underwent same-day right-sided heart catheterization (RHC) and MRI at a PH referral center between April 2012 and April 2017. The diagnostic accuracy of the IVS angle to identify Cpc-PH in patients with pulmonary arterial wedge pressure (PAWP) greater than 15 mmHg was assessed by using receiver operator characteristic curves, sensitivity, specificity, and negative and positive predictive values. IVS angle also was assessed as a predictor of all-cause mortality by using Cox uni- and multivariable proportional hazards regression. Results A total of 708 patients underwent same-day MRI and RHC, and 171 patients had PAWP greater than 15 mmHg. Mean age was 70 years (range, 21-90 years) (women: mean age, 69 years; range, 21-88 years) (men: mean age, 71 years; range, 43-90 years). Systolic IVS angle correlated with diastolic pulmonary gradient (DPG) (r = 0.739, P < .001). Receiver operating characteristic curve analysis showed septal angle enabled identification of Cpc-PH (DPG ≥ 7), with an area under the receiver operating characteristic curve of 0.911 (P < .001). A 160° threshold, derived from the first half of patients with raised PAWP, enabled identification of a DPG of at least 7 mmHg with 67% sensitivity and 93% specificity (P < .001) in the second cohort of patients with raised PAWP. IVS angle was predictive of all-cause mortality (standardized univariable hazard ratio, 1.615; P < .01). Conclusion The systolic interventricular septal angle is elevated in patients with combined pre- and postcapillary pulmonary hypertension and enables one to predict those patients who have PH due to left-sided heart disease who have an increased risk of death. Published under a CC BY 4.0 license. Online supplemental material is available for this article.