CBS 2019
CBSMD教育中心
中 文

ASCVD Prevention

Abstract

Recommended Article

High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data The Objective Physical Activity and Cardiovascular Disease Health in Older Women (OPACH) Study 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines 2020 Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes Baseline Characteristics and Risk Profiles of Participants in the ISCHEMIA Randomized Clinical Trial Haptoglobin genotype: a determinant of cardiovascular complication risk in type 1 diabetes Circadian-Regulated Cell Death in Cardiovascular Diseases

Original Research2019 Aug 7;40(30):2482-2491.

JOURNAL:Eur Heart J. Article Link

Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis

Vromman A, Ruvkun V, Shvartz E et al. Keywords: arterial remodelling; atherosclerosis; inflammation; interleukin-1

ABSTRACT


AIMS - Targeting interleukin-1 (IL-1) represents a novel therapeutic approach to atherosclerosis. CANTOS demonstrated the benefits of IL-1β neutralization in patients post-myocardial infarction with residual inflammatory risk. Yet, some mouse data have shown a prominent role of IL-1α rather than IL-1β in atherosclerosis, or even a deleterious effect of IL-1 on outward arterial remodelling in atherosclerosis-susceptible mice. To shed light on these disparate results, this study investigated the effect of neutralizing IL-1α or/and IL-1β isoforms starting either early in atherogenesis or later in ApoE-/- mice with established atheroma.


METHODS AND RESULTS - The neutralization of IL-1α or of both IL-1 isoforms impaired outward remodelling during early atherogenesis as assessed by micro-computed tomographic and histologic assessment. In contrast, the neutralization of IL-1β did not impair outward remodelling either during early atherogenesis or in mice with established lesions. Interleukin-1β inhibition promoted a slant of blood monocytes towards a less inflammatory state during atherogenesis, reduced the size of established atheromata, and increased plasma levels of IL-10 without limiting outward remodelling of brachiocephalic arteries.


CONCLUSION - This study established a pivotal role for IL-1α in the remodelling of arteries during early experimental atherogenesis, whereas IL-1β drives inflammation during atherogenesis and the evolution of advanced atheroma in mice.

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019.