CBS 2019
CBSMD教育中心
中 文

ASCVD Prevention

Abstract

Recommended Article

Adenosine and adenosine receptor-mediated action in coronary microcirculation Long-Term All-Cause and Cause-Specific Mortality in Asymptomatic Patients With CAC ≥1,000: Results From the CAC Consortium Association of Sustained Blood Pressure Control with Multimorbidity Progression Among Older Adults Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options Metabolic Interactions and Differences between Coronary Heart Disease and Diabetes Mellitus: A Pilot Study on Biomarker Determination and Pathogenesis CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis Non-obstructive High-Risk Plaques Increase the Risk of Future Culprit Lesions Comparable to Obstructive Plaques Without High-Risk Features: The ICONIC Study Clinical Risk Factors and Atherosclerotic Plaque Extent to Define Risk for Major Events in Patients Without Obstructive Coronary Artery Disease: The Long-Term Coronary Computed Tomography Angiography CONFIRM Registry

Original Research2020 Jun 1;41(21):1988-1999.

JOURNAL:Eur Heart J. Article Link

Simple Electrocardiographic Measures Improve Sudden Arrhythmic Death Prediction in Coronary Disease

NA Chatterjee, JT Tikkanen, PREDETERMINE Investigators et al. Keywords: sudden death; arrhythmic death; electrocardiogram; CHD

ABSTRACT

AIMS -  To determine whether the combination of standard electrocardiographic (ECG) markers reflecting domains of arrhythmic risk improves sudden and/or arrhythmic death (SAD) risk stratification in patients with coronary heart disease (CHD).

 

METHODS AND RESULTS -  The association between ECG markers and SAD was examined in a derivation cohort (PREDETERMINE; N = 5462) with adjustment for clinical risk factors, left ventricular ejection fraction (LVEF), and competing risk. Competing outcome models assessed the differential association of ECG markers with SAD and competing mortality. The predictive value of a derived ECG score was then validated (ARTEMIS; N = 1900). In the derivation cohort, the 5-year cumulative incidence of SAD was 1.5% [95% confidence interval (CI) 1.1-1.9] and 6.2% (95% CI 4.5-8.3) in those with a low- and high-risk ECG score, respectively (P for Δ < 0.001). A high-risk ECG score was more strongly associated with SAD than non-SAD mortality (adjusted hazard ratios = 2.87 vs. 1.38 respectively; P for Δ = 0.003) and the proportion of deaths due to SAD was greater in the high vs. low risk groups (24.9% vs. 16.5%, P for Δ = 0.03). Similar findings were observed in the validation cohort. The addition of ECG markers to a clinical risk factor model inclusive of LVEF improved indices of discrimination and reclassification in both derivation and validation cohorts, including correct reclassification of 28% of patients in the validation cohort [net reclassification improvement 28 (7-49%), P = 0.009].

 

CONCLUSION -  For patients with CHD, an externally validated ECG score enriched for both absolute and proportional SAD risk and significantly improved risk stratification compared to standard clinical risk factors including LVEF.

 

CLINICAL TRIAL REGISTRATION -  https://clinicaltrials.gov/ct2/show/NCT01114269. ClinicalTrials.gov ID NCT01114269.