CBS 2019
CBSMD教育中心
中 文

经导管主动脉瓣置换

Abstract

Recommended Article

Raising the Evidentiary Bar for Guideline Recommendations for TAVR: JACC Review Topic of the Week Aortic Valve Stenosis Treatment Disparities in the Underserved JACC Council Perspectives Timing of intervention in asymptomatic patients with valvular heart disease Meta-Analysis of Effectiveness and Safety of Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Low-to-Intermediate Surgical Risk Cohort Precision Medicine in TAVR: How to Select the Right Device for the Right Patient Association of Smoking Status With Long‐Term Mortality and Health Status After Transcatheter Aortic Valve Replacement: Insights From the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry Expert Recommendations on Cardiac Computed Tomography for Planning Transcatheter Left Atrial Appendage Occlusion 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

Original Research2020 Dec 30;jeaa342.

JOURNAL:Eur Heart J Cardiovasc Imaging. Article Link

Right ventricular function and outcome in patients undergoing transcatheter aortic valve replacement

M Koschutnik, V Dannenberg, C Nitsche et al. Keywords: CMR; RV function; TAVR; aortic stenosis; echocardiography; outcome

ABSTRACT

AIMS - Right ventricular dysfunction (RVD) on echocardiography has been shown to predict outcomes in patients undergoing transcatheter aortic valve replacement (TAVR). However, a comparison with the gold standard, RV ejection fraction (EF) on cardiovascular magnetic resonance (CMR), has never been performed.

 

METHODS AND RESULTS - Consecutive patients scheduled for TAVR underwent echocardiography and CMR. RV fractional area change (FAC), tricuspid annular plane systolic excursion, RV free-lateral-wall tissue Doppler (S'), and strain were assessed on echocardiography, and RVEF on CMR. Patients were prospectively followed. Adjusted regression analyses were used to report the strength of association per 1-SD decline for each RV function parameter with (i) N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels, (ii) prolonged in-hospital stay (>14 days), and (iii) a composite of heart failure hospitalization and death. Two hundred and four patients (80.9 ± 6.6 y/o; 51% female; EuroSCORE-II: 6.3 ± 5.1%) were included. At a cross-sectional level, all RV function parameters were associated with NT-proBNP levels, but only FAC and RVEF were significantly associated with a prolonged in-hospital stay [adjusted odds ratio 1.86, 95% confidence interval (CI) 1.07-3.21; P = 0.027 and 2.29, 95% CI 1.43-3.67; P = 0.001, respectively]. A total of 56 events occurred during follow-up (mean 13.7 ± 9.5 months). After adjustment for the EuroSCORE-II, only RVEF was significantly associated with the composite endpoint (adjusted hazard ratio 1.70, 95% CI 1.32-2.20; P < 0.001).

 

CONCLUSION - RVD as defined by echocardiography is associated with an advanced disease state but fails to predict outcomes after adjustment for pre-existing clinical risk factors in TAVR patients. In contrast, RVEF on CMR is independently associated with heart failure hospitalization and death.