CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

Treatment Effects of Pulmonary Artery Denervation for Pulmonary Arterial Hypertension Stratified by REVEAL Risk Score: Results from PADN-CFDA Trial Comparison of intravascular ultrasound versus angiography-guided drug-eluting stent implantation: a meta-analysis of one randomised trial and ten observational studies involving 19,619 patients Long-Term Outcomes After PCI or CABG for Left Main Coronary Artery Disease According to Lesion Location Dual-antiplatelet treatment beyond 1 year after drug-eluting stent implantation (ARCTIC-Interruption): a randomised trial Assessment and Quantitation of Stent Results by Intracoronary Optical Coherence Tomography Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction: the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) trial A three-vessel virtual histology intravascular ultrasound analysis of frequency and distribution of thin-cap fibroatheromas in patients with acute coronary syndrome or stable angina pectoris

Original Research2023 Mar 27;S1053-2498(23)01793-X.

JOURNAL: J Heart Lung Transplant. Article Link

Treatment Effects of Pulmonary Artery Denervation for Pulmonary Arterial Hypertension Stratified by REVEAL Risk Score: Results from PADN-CFDA Trial

J Zhang, J Kan, S-L Chen et al. Keywords: PH; PADN; low vs. intermediate-high-risk PAH patients; 6MWD

ABSTRACT


BACKGROUND The differential treatment effect of pulmonary artery denervation (PADN) in pulmonary arterial hypertension (PAH) patients with different risk burdens remains unclear. This study aimed to determine the effectiveness of PADN in low vs. intermediate-high-risk PAH patients.


METHODS In total, 128 patients with treatment naive PAH included in the PADN-CFDA trial were categorized into low-risk and intermediate-high-risk patients. The primary endpoint was the between-group difference in the change in 6-minute walk distance (6 MWD) from baseline to 6 months.


RESULTS In the intermediate-high-risk group, those treated with PADN and PDE-5i had a greater improvement in 6 MWD from baseline to 6 months as compared to those treated with sham plus PDE-5i. From baseline to 6 months, pulmonary vascular resistance (PVR) was reduced by 6.1±0.6 and 2.0 ± 0.7 Wood units following PADN plus PDE-5i and sham plus PDE-5i, respectively, along with the significant reduction of NT-proBNP in the intermediate-high-risk group. However, there were no significant differences in 6 MWD, PVR, and NT-proBNP between the PADN plus PDE-5i and sham plus PDE-5i groups among low-risk patients. Moreover, the right ventricular function was equally improved by PADN treatment across the low-, intermediate-, and high-risk groups. Clinical worsening was less with PADN plus PDE-5i treatment during the 6-month follow-up.


CONCLUSIONS In patients with PAH, PADN plus PDE-5i improved exercise capacity, NT-proBNP, hemodynamic, and clinical outcomes during the 6-month follow-up among intermediate-high risk patients.