CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Coronary Physiology in the Cardiac Catheterization Laboratory Haemodynamic definitions and updated clinical classification of pulmonary hypertension Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation Genetic analyses in a cohort of 191 pulmonary arterial hypertension patients Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis Coronary Artery Intraplaque Microvessels by Optical Coherence Tomography Correlate With Vulnerable Plaque and Predict Clinical Outcomes in Patients With Ischemic Angina Pulmonary Hypertension in Heart Failure: Pathophysiology, Pathobiology, and Emerging Clinical Perspectives Coronary Microcirculation Downstream Non-Infarct-Related Arteries in the Subacute Phase of Myocardial Infarction: Implications for Physiology-Guided Revascularization Atrial Fibrillation: JACC Council Perspectives Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention: Outcomes From the Pan-London PCI Cohort

Review Article2011 Feb;27(2):225-37.

JOURNAL:Int J Cardiovasc Imaging. Article Link

Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond

Gogas BD, Farooq V, Serruys PW et al. Keywords: Intravascular ultrasound; Tissue characterization; Atherosclerosis

ABSTRACT


Cardiovascular disease remains the leading cause of mortality, morbidity and disability in the developed world, predominantly affecting the adult population. In the early 1990s coronary heart disease (CHD) was established as affecting one in two men and one in three women by the age of forty. Despite the dramatic progress in the field of cardiovascular medicine in terms of diagnosis and treatment of heart disease, modest improvements have only been achieved when the reduction of cardiovascular mortality and morbidity indices are assessed. To better understand coronary atherosclerosis, new imaging modalities have been introduced. These novel imaging modalities have been used in two ways: (1) for the characterization of plaque types; (2) for the assessment of the progression and regression of tissue types. These two aspects will be discussed in this review.