CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Comparison of inhospital mortality, length of hospitalization, costs, and vascular complications of percutaneous coronary interventions guided by ultrasound versus angiography Lipid-Modifying Agents, From Statins to PCSK9 Inhibitors: JACC Focus Seminar High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial Extracellular Vesicles From Epicardial Fat Facilitate Atrial Fibrillation Current treatment of significant left main coronary artery disease: A review 1-Year Outcomes After Edge-to-Edge Valve Repair for Symptomatic Tricuspid Regurgitation: Results From the TriValve Registry Prognostic value of coronary artery calcium screening in subjects with and without diabetes Long-term outcomes following mini-crush versus culotte stenting for the treatment of unprotected left main disease: insights from the Milan and New-Tokyo (MITO) registry 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines The impact of intravascular ultrasound guidance during drug eluting stent implantation on angiographic outcomes

Original Research2018 May;1865(5):709-720.

JOURNAL:Biochim Biophys Acta. Article Link

Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation

Zhang JX, Qu XL, Chen SL et al. Keywords: Autophagic flux; Endothelial cells; Endothelial nitric oxide synthase uncoupling; Low shear stress

ABSTRACT


Uncoupled endothelial nitric oxide synthase (eNOS) produces O2- instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O2- production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O2- burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O2- releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis.