CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Health Status After Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients With Aortic Stenosis Transcatheter Aortic Valve Replacement During Pregnancy Comparison of newer generation self-expandable vs. balloon-expandable valves in transcatheter aortic valve implantation: the randomized SOLVE-TAVI trial Mechanisms of in-stent restenosis after drug-eluting stent implantation: intravascular ultrasound analysis Association of Effective Regurgitation Orifice Area to Left Ventricular End-Diastolic Volume Ratio With Transcatheter Mitral Valve Repair OutcomesA Secondary Analysis of the COAPT Trial Feasibility of Coronary Access and Aortic Valve Reintervention in Low-Risk TAVR Patients The Year in Cardiovascular Medicine 2020: Valvular Heart Disease: Discussing the Year in Cardiovascular Medicine for 2020 in the field of valvular heart disease is Professor Helmut Baumgartner and Dr Javier Bermejo. Mark Nicholls reports Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement Impact of myocardial fibrosis on left ventricular remodelling, recovery, and outcome after transcatheter aortic valve implantation in different haemodynamic subtypes of severe aortic stenosis Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study

Original Research2018 May;1865(5):709-720.

JOURNAL:Biochim Biophys Acta. Article Link

Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation

Zhang JX, Qu XL, Chen SL et al. Keywords: Autophagic flux; Endothelial cells; Endothelial nitric oxide synthase uncoupling; Low shear stress

ABSTRACT


Uncoupled endothelial nitric oxide synthase (eNOS) produces O2- instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O2- production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O2- burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O2- releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis.