CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

North American Expert Review of Rotational Atherectomy Treating Bifurcation Lesions: The Result Overcomes the Technique Orbital atherectomy for the treatment of small (2.5mm) severely calcified coronary lesions: ORBIT II sub-analysis Pulmonary hypertension is associated with an increased incidence of NAFLD: A retrospective cohort study of 18,910 patients Comparison of 2 Different Drug-Coated Balloons in In-Stent Restenosis: The RESTORE ISR China Randomized Trial Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II) Temporal changes in radial access use, associates and outcomes in patients undergoing PCI using rotational atherectomy between 2007 and 2014: results from the British Cardiovascular Intervention Society national database Drug-Coated Balloon for De Novo Coronary Artery Disease: JACC State-of-the-Art Review Right ventricular expression of NT-proBNP adds predictive value to REVEAL score in patients with pulmonary arterial hypertension Intravascular ultrasound enhances the safety of rotational atherectomy

Original Research2018 May;1865(5):709-720.

JOURNAL:Biochim Biophys Acta. Article Link

Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation

Zhang JX, Qu XL, Chen SL et al. Keywords: Autophagic flux; Endothelial cells; Endothelial nitric oxide synthase uncoupling; Low shear stress

ABSTRACT


Uncoupled endothelial nitric oxide synthase (eNOS) produces O2- instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O2- production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O2- burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O2- releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis.