CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Circadian Cadence and NR1D1 Tune Cardiovascular Disease Association of Prior Left Ventricular Ejection Fraction With Clinical Outcomes in Patients With Heart Failure With Midrange Ejection Fraction Cardio-Oncology: Vascular and Metabolic Perspectives: A Scientific Statement From the American Heart Association Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents Comparison of intravascular ultrasound versus angiography-guided drug-eluting stent implantation: a meta-analysis of one randomised trial and ten observational studies involving 19,619 patients Clinical impact of intravascular ultrasound guidance in drug-eluting stent implantation for unprotected left main coronary disease: pooled analysis at the patient-level of 4 registries Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure Phenotypic Refinement of Heart Failure in a National Biobank Facilitates Genetic Discovery Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: a feasibility, safety, and outcome study Myofibroblast Phenotype and Reversibility of Fibrosis in Patients With End-Stage Heart Failure

Review ArticleEpub 2017 Sep 15; Volume 15, 2017 - Issue 11

JOURNAL:Expert Rev Cardiovasc Ther. Article Link

Robotics in percutaneous cardiovascular interventions

Pourdjabbar A, Ang L, Mahmud E et al. Keywords: Robotics; coronary artery disease; percutaneous coronary intervention; peripheral arterial disease; radiation safety

ABSTRACT

Introduction - The fundamental technique of performing percutaneous cardiovascular (CV) interventions has remained unchanged and requires operators to wear heavy lead aprons to minimize exposure to ionizing radiation. Robotic technology is now being utilized in interventional cardiology partially as a direct result of the increasing appreciation of the long-term occupational hazards of the field. This review was undertaken to report the clinical outcomes of percutaneous robotic coronary and peripheral vascular interventions.

Areas covered - A systematic literature review of percutaneous robotic CV interventions was undertaken. The safety and feasibility of percutaneous robotically-assisted CV interventions has been validated in simple to complex coronary disease, and iliofemoral disease. Studies have shown that robotically-assisted PCI significantly reduces operator exposure to harmful ionizing radiation without compromising procedural success or clinical efficacy. In addition to the operator benefits, robotically-assisted intervention has the potential for patient advantages by allowing more accurate lesion length measurement, precise stent placement and lower patient radiation exposure. However, further investigation is required to fully elucidate these potential benefits.

Expert commentary - Incremental improvement in robotic technology and telecommunications would enable treatment of an even broader patient population, and potentially provide remote robotic PCI.