CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

In-stent neoatherosclerosis: a final common pathway of late stent failure Health Status after Transcatheter vs. Surgical Aortic Valve Replacement in Low-Risk Patients with Aortic Stenosis Sequence variations in PCSK9, low LDL, and protection against coronary heart disease Heart Failure and Atrial Fibrillation, Like Fire and Fury Modifiable lifestyle factors and heart failure: A Mendelian randomization study Incidence and Outcomes of Surgical Bailout During TAVR : Insights From the STS/ACC TVT Registry The prevalence and importance of frailty in heart failure with reduced ejection fraction - an analysis of PARADIGM-HF and ATMOSPHERE Suture- or Plug-Based Large-Bore Arteriotomy Closure: A Pilot Randomized Controlled Trial Metabolic Interactions and Differences between Coronary Heart Disease and Diabetes Mellitus: A Pilot Study on Biomarker Determination and Pathogenesis Primary Prevention of Heart Failure in Women

Review ArticleEpub 2017 Sep 15; Volume 15, 2017 - Issue 11

JOURNAL:Expert Rev Cardiovasc Ther. Article Link

Robotics in percutaneous cardiovascular interventions

Pourdjabbar A, Ang L, Mahmud E et al. Keywords: Robotics; coronary artery disease; percutaneous coronary intervention; peripheral arterial disease; radiation safety

ABSTRACT

Introduction - The fundamental technique of performing percutaneous cardiovascular (CV) interventions has remained unchanged and requires operators to wear heavy lead aprons to minimize exposure to ionizing radiation. Robotic technology is now being utilized in interventional cardiology partially as a direct result of the increasing appreciation of the long-term occupational hazards of the field. This review was undertaken to report the clinical outcomes of percutaneous robotic coronary and peripheral vascular interventions.

Areas covered - A systematic literature review of percutaneous robotic CV interventions was undertaken. The safety and feasibility of percutaneous robotically-assisted CV interventions has been validated in simple to complex coronary disease, and iliofemoral disease. Studies have shown that robotically-assisted PCI significantly reduces operator exposure to harmful ionizing radiation without compromising procedural success or clinical efficacy. In addition to the operator benefits, robotically-assisted intervention has the potential for patient advantages by allowing more accurate lesion length measurement, precise stent placement and lower patient radiation exposure. However, further investigation is required to fully elucidate these potential benefits.

Expert commentary - Incremental improvement in robotic technology and telecommunications would enable treatment of an even broader patient population, and potentially provide remote robotic PCI.