CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Management of Antithrombotic Therapy in Atrial Fibrillation Patients Undergoing PCI: JACC State-of-the-Art Review Subclinical and Device-Detected Atrial Fibrillation: Pondering the Knowledge Gap: A Scientific Statement From the American Heart Association Prognostic implications of baseline 6‐min walk test performance in intermediate risk patients undergoing transcatheter aortic valve replacement INTERMACS Profiles and Outcomes Among Non–Inotrope-Dependent Outpatients With Heart Failure and Reduced Ejection Fraction Use of IVUS guided coronary stenting with drug eluting stent: a systematic review and meta-analysis of randomized controlled clinical trials and high quality observational studies Coronary artery imaging with intravascular high-frequency ultrasound Association of Circulating Monocyte Chemoattractant Protein-1 Levels With Cardiovascular Mortality: A Meta-analysis of Population-Based Studies Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy Simple Electrocardiographic Measures Improve Sudden Arrhythmic Death Prediction in Coronary Disease Combined use of OCT and IVUS in spontaneous coronary artery dissection

Original Research1990 May;81(5):1575-85

JOURNAL:Circulation. Article Link

Coronary artery imaging with intravascular high-frequency ultrasound

Potkin BN, Bartorelli AL, Gessert JM et al. Keywords: coronary artery imaging; intravascular high-frequency ultrasound

ABSTRACT


Safe and effective clinical application of new interventional therapies may require more precise imaging of atherosclerotic coronary arteries. To determine the reliability of catheter-based intravascular ultrasound as an imaging modality, a miniaturized prototype ultrasound system (1-mm transducer; center frequency, 25 MHz) was used to acquire two-dimensional, cross-sectional images in 21 human coronary arteries from 13 patients studied at necropsy who had moderate-to-severe atherosclerosis. Fifty-four atherosclerotic sites imagined by ultrasound were compared with formalin-fixed and fresh histological sections of the coronary arteries with a digital video planimetry system. Ultrasound and histological measurements correlated significantly (all p less than 0.0001) for coronary artery cross-sectional area (r = 0.94), residual lumen cross-sectional area (r = 0.85), percent cross-sectional area (r = 0.84), and linear wall thickness (plaque and media) measured at 0 degrees, 90 degrees, 180 degrees, and 270 degrees (r = 0.92). Moreover, ultrasound accurately predicted histological plaque composition in 96% of cases. Anatomic features of the coronary arteries that were easily discernible were the lumen-plaque and media-adventitia interfaces, very bright echoes casting acoustic shadows in calcified plaques, bright and homogeneous echoes in fibrous plaques, and relatively echo-lucent images in lipid-filled lesions. These data indicate that intravascular ultrasound provides accurate image characterization of the artery lumen and wall geometry as well as the presence, distribution, and histological type of atherosclerotic plaque. Thus, ultrasound imaging appears to have great potential application for enhanced diagnosis of coronary atherosclerosis and may serve to guide new catheter-based techniques in the treatment of coronary artery disease.