CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: a near-infrared spectroscopy study Impact of post-intervention minimal stent area on 9-month follow-up patency of paclitaxel-eluting stents: an integrated intravascular ultrasound analysis from the TAXUS IV, V, and VI and TAXUS ATLAS Workhorse, Long Lesion, and Direct Stent Trials Considerations for Optimal Device Selection in Transcatheter Aortic Valve Replacement: A Review Primary Prevention Trial Designs Using Coronary Imaging: A National Heart, Lung, and Blood Institute Workshop Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis Why and How to Measure Aortic Valve Calcification in Patients With Aortic Stenosis Association of Reduced Apical Untwisting With Incident HF in Asymptomatic Patients With HF Risk Factors Contribution of stent underexpansion to recurrence after sirolimus-eluting stent implantation for in-stent restenosis Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance

Original Research1990 May;81(5):1575-85

JOURNAL:Circulation. Article Link

Coronary artery imaging with intravascular high-frequency ultrasound

Potkin BN, Bartorelli AL, Gessert JM et al. Keywords: coronary artery imaging; intravascular high-frequency ultrasound

ABSTRACT


Safe and effective clinical application of new interventional therapies may require more precise imaging of atherosclerotic coronary arteries. To determine the reliability of catheter-based intravascular ultrasound as an imaging modality, a miniaturized prototype ultrasound system (1-mm transducer; center frequency, 25 MHz) was used to acquire two-dimensional, cross-sectional images in 21 human coronary arteries from 13 patients studied at necropsy who had moderate-to-severe atherosclerosis. Fifty-four atherosclerotic sites imagined by ultrasound were compared with formalin-fixed and fresh histological sections of the coronary arteries with a digital video planimetry system. Ultrasound and histological measurements correlated significantly (all p less than 0.0001) for coronary artery cross-sectional area (r = 0.94), residual lumen cross-sectional area (r = 0.85), percent cross-sectional area (r = 0.84), and linear wall thickness (plaque and media) measured at 0 degrees, 90 degrees, 180 degrees, and 270 degrees (r = 0.92). Moreover, ultrasound accurately predicted histological plaque composition in 96% of cases. Anatomic features of the coronary arteries that were easily discernible were the lumen-plaque and media-adventitia interfaces, very bright echoes casting acoustic shadows in calcified plaques, bright and homogeneous echoes in fibrous plaques, and relatively echo-lucent images in lipid-filled lesions. These data indicate that intravascular ultrasound provides accurate image characterization of the artery lumen and wall geometry as well as the presence, distribution, and histological type of atherosclerotic plaque. Thus, ultrasound imaging appears to have great potential application for enhanced diagnosis of coronary atherosclerosis and may serve to guide new catheter-based techniques in the treatment of coronary artery disease.