CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

North American Expert Review of Rotational Atherectomy Treating Bifurcation Lesions: The Result Overcomes the Technique Orbital atherectomy for the treatment of small (2.5mm) severely calcified coronary lesions: ORBIT II sub-analysis Pulmonary hypertension is associated with an increased incidence of NAFLD: A retrospective cohort study of 18,910 patients Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II) Right ventricular expression of NT-proBNP adds predictive value to REVEAL score in patients with pulmonary arterial hypertension Comparison of 2 Different Drug-Coated Balloons in In-Stent Restenosis: The RESTORE ISR China Randomized Trial Temporal changes in radial access use, associates and outcomes in patients undergoing PCI using rotational atherectomy between 2007 and 2014: results from the British Cardiovascular Intervention Society national database Drug-Coated Balloon for De Novo Coronary Artery Disease: JACC State-of-the-Art Review Healed coronary plaque rupture as a cause of rapid lesion progression: a case demonstrated with in vivo histopathology by directional coronary atherectomy

Original Research1990 May;81(5):1575-85

JOURNAL:Circulation. Article Link

Coronary artery imaging with intravascular high-frequency ultrasound

Potkin BN, Bartorelli AL, Gessert JM et al. Keywords: coronary artery imaging; intravascular high-frequency ultrasound

ABSTRACT


Safe and effective clinical application of new interventional therapies may require more precise imaging of atherosclerotic coronary arteries. To determine the reliability of catheter-based intravascular ultrasound as an imaging modality, a miniaturized prototype ultrasound system (1-mm transducer; center frequency, 25 MHz) was used to acquire two-dimensional, cross-sectional images in 21 human coronary arteries from 13 patients studied at necropsy who had moderate-to-severe atherosclerosis. Fifty-four atherosclerotic sites imagined by ultrasound were compared with formalin-fixed and fresh histological sections of the coronary arteries with a digital video planimetry system. Ultrasound and histological measurements correlated significantly (all p less than 0.0001) for coronary artery cross-sectional area (r = 0.94), residual lumen cross-sectional area (r = 0.85), percent cross-sectional area (r = 0.84), and linear wall thickness (plaque and media) measured at 0 degrees, 90 degrees, 180 degrees, and 270 degrees (r = 0.92). Moreover, ultrasound accurately predicted histological plaque composition in 96% of cases. Anatomic features of the coronary arteries that were easily discernible were the lumen-plaque and media-adventitia interfaces, very bright echoes casting acoustic shadows in calcified plaques, bright and homogeneous echoes in fibrous plaques, and relatively echo-lucent images in lipid-filled lesions. These data indicate that intravascular ultrasound provides accurate image characterization of the artery lumen and wall geometry as well as the presence, distribution, and histological type of atherosclerotic plaque. Thus, ultrasound imaging appears to have great potential application for enhanced diagnosis of coronary atherosclerosis and may serve to guide new catheter-based techniques in the treatment of coronary artery disease.