CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Transcatheter Interventions for Tricuspid Valve Disease: What to Do and Who to Do it On The Tricuspid Annular Plane Systolic Excursion to Systolic Pulmonary Artery Pressure Index: Association With All-Cause Mortality in Patients With Moderate or Severe Tricuspid Regurgitation Italian Society of Interventional Cardiology (GIse) Registry Of Transcatheter Treatment of Mitral Valve RegurgitaTiOn (GIOTTO): Impact of Valve Disease Etiology and Residual Mitral Regurgitation after MitraClip Implantation Pathophysiology, diagnosis and new therapeutic approaches for ischemic mitral regurgitation An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction Risk of Atrial Fibrillation According to Cancer Type: A Nationwide Population-Based Study Incidence and Standardized Definitions of Mitral Valve Leaflet Adverse Events After Transcatheter Mitral Valve Repair: the EXPAND Study Outcomes of TTVI in Patients With Pacemaker or Defibrillator Leads: Data From the TriValve Registry Novel Transcatheter Mitral Valve Prosthesis for Patients With Severe Mitral Annular Calcification Cardio-Oncology Services: rationale, organization, and implementation: A report from the ESC Cardio-Oncology council

Original Research1990 May;81(5):1575-85

JOURNAL:Circulation. Article Link

Coronary artery imaging with intravascular high-frequency ultrasound

Potkin BN, Bartorelli AL, Gessert JM et al. Keywords: coronary artery imaging; intravascular high-frequency ultrasound

ABSTRACT


Safe and effective clinical application of new interventional therapies may require more precise imaging of atherosclerotic coronary arteries. To determine the reliability of catheter-based intravascular ultrasound as an imaging modality, a miniaturized prototype ultrasound system (1-mm transducer; center frequency, 25 MHz) was used to acquire two-dimensional, cross-sectional images in 21 human coronary arteries from 13 patients studied at necropsy who had moderate-to-severe atherosclerosis. Fifty-four atherosclerotic sites imagined by ultrasound were compared with formalin-fixed and fresh histological sections of the coronary arteries with a digital video planimetry system. Ultrasound and histological measurements correlated significantly (all p less than 0.0001) for coronary artery cross-sectional area (r = 0.94), residual lumen cross-sectional area (r = 0.85), percent cross-sectional area (r = 0.84), and linear wall thickness (plaque and media) measured at 0 degrees, 90 degrees, 180 degrees, and 270 degrees (r = 0.92). Moreover, ultrasound accurately predicted histological plaque composition in 96% of cases. Anatomic features of the coronary arteries that were easily discernible were the lumen-plaque and media-adventitia interfaces, very bright echoes casting acoustic shadows in calcified plaques, bright and homogeneous echoes in fibrous plaques, and relatively echo-lucent images in lipid-filled lesions. These data indicate that intravascular ultrasound provides accurate image characterization of the artery lumen and wall geometry as well as the presence, distribution, and histological type of atherosclerotic plaque. Thus, ultrasound imaging appears to have great potential application for enhanced diagnosis of coronary atherosclerosis and may serve to guide new catheter-based techniques in the treatment of coronary artery disease.