CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Definitions and classifications of bifurcation lesions and treatment Definition, classification and diagnosis of pulmonary hypertension Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium Ticagrelor alone versus ticagrelor plus aspirin from month 1 to month 12 after percutaneous coronary intervention in patients with acute coronary syndromes (ULTIMATE-DAPT): a randomised, placebo-controlled, double-blind clinical trial De-escalating Dual Antiplatelet Therapy to Ticagrelor Monotherapy in Acute Coronary Syndrome : A Systematic Review and Individual Patient Data Meta-analysis of Randomized Clinical Trials IVUS-Guided vs Angiography-Guided PCI in Patients With Diabetes With Acute Coronary Syndromes: The IVUS-ACS Trial TRAP1 drives smooth muscle cell senescence and promotes atherosclerosis via HDAC3-primed histone H4 lysine 12 lactylation Viridans Streptococcal Biofilm Evades Immune Detection and Contributes to Inflammation and Rupture of Atherosclerotic Plaques Beta-Blockers after Myocardial Infarction and Preserved Ejection Fraction Beta-Blockers after Myocardial Infarction and Preserved Ejection Fraction

Original Research2018 Oct 1;92(4):644-650.

JOURNAL:Catheter Cardiovasc Interv. Article Link

When high‐volume PCI operators in high‐volume hospitals move to lower volume hospitals—Do they still maintain high volume and quality of outcomes?

Lu TH, Li ST, Yin WH et al. Keywords: percutaneous coronary intervention; utilization; volume

ABSTRACT


OBJECTIVES - The aim of this quasi-experimental study was to examine whether high-volume percutaneous coronary intervention (PCI) operators still maintain high volume and quality of outcomes when they moved to lower volume hospitals.


BACKGROUND - Systematic reviews have indicated that high-volume PCI operators and hospitals have higher quality outcomes. However, little is known on whether high PCI volume and high quality outcomes are mainly due to operator characteristics (i.e., skill and experience) and is portable across organizations or whether it is due to hospital characteristics (i.e., equipment, team, and management system) and is less portable.


METHODS - We used Taiwan National Health Insurance claims data 2000-2012 to identify 98 high-volume PCI operators, 10 of whom moved from one hospital to another during the study period. We compared the PCI volume, risk-adjusted mortality ratio, and major adverse cardiovascular event (MACE) ratio before and after moving.


RESULTS - Of the 10 high-volume operators who moved, 6 moved from high- to moderate- or low-volume hospitals, with median annual PCI volumes (interquartile range) of 130 (117-165) in prior hospitals and 54 (46-84) in subsequent hospitals (the hospital the operator moved to), and the remaining 4 moved from high to high-volume hospitals, with median annual PCI volumes (interquartile range) of 151 (133-162) in prior hospitals and 193 (178-239) in subsequent hospitals. No significant differences were observed in the risk-adjusted mortality ratios and MACE ratios between high-volume operators and matched controls before and after moving.


CONCLUSIONS - High-volume operators cannot maintain high volume when they moved from high to moderate or low-volume hospitals; however, the quality of care is maintained. High PCI volume and high-quality outcomes are less portable and more hospital bound.