CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Update in the Percutaneous Management of Coronary Chronic Total Occlusions Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents Comparison of Stenting Versus Bypass Surgery According to the Completeness of Revascularization in Severe Coronary Artery Disease: Patient-Level Pooled Analysis of the SYNTAX, PRECOMBAT, and BEST Trials Percutaneous Coronary Intervention Readmissions Where Are the Solutions? Reappraisal of Reported Genes for Sudden Arrhythmic Death: An Evidence-Based Evaluation of Gene Validity for Brugada Syndrome High-Sensitivity Troponin I Levels and Coronary Artery Disease Severity, Progression, and Long-Term Outcomes Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction Selection of stenting approach for coronary bifurcation lesions 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study) Coronary Artery Calcium Progression Is Associated With Coronary Plaque Volume Progression - Results From a Quantitative Semiautomated Coronary Artery Plaque Analysis

Clinical Trial2008 Oct;156(4):641-648.e1.

JOURNAL:Am Heart J. Article Link

A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation in patients with systolic heart failure: rationale, design, and baseline patient characteristics.

Abraham WT, , FIX-HF-5 Investigators and Coordinators. Keywords: QRS duration; exercise tolerance; heart failure; peak Vo(2); quality of life

ABSTRACT


Cardiac contractility modulation (CCM) signals are nonexcitatory electrical signals delivered during the cardiac absolute refractory period that enhance the strength of cardiac muscular contraction. Prior research in experimental and human heart failure has shown that CCM signals normalize phosphorylation of key proteins and expression of genes coding for proteins involved in regulation of calcium cycling and contraction. The results of prior clinical studies of CCM have supported its safety and efficacy. A large-scale clinical study, the FIX-HF-5 study, is currently underway to test the safety and efficacy of this treatment. In this article, we provide an overview of the system used to deliver CCM signals, the implant procedure, and the details and rationale of the FIX-HF-5 study design. Baseline characteristics for patients randomized in this trial are also presented.