CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China) Cardiac Implantable Electronic Devices in Patients With Left Ventricular Assist Systems Non-eligibility for reperfusion therapy in patients presenting with ST-segment elevation myocardial infarction: Contemporary insights from the National Cardiovascular Data Registry (NCDR) Left Main Revascularization in 2017 Coronary Artery Bypass Grafting or Percutaneous Coronary Intervention? The Wait for High-Sensitivity Troponin Is Over—Proceed Cautiously Impact of the US Food and Drug Administration–Approved Sex-Specific Cutoff Values for High-Sensitivity Cardiac Troponin T to Diagnose Myocardial Infarction Can We Use the Intrinsic Left Ventricular Delay (QLV) to Optimize the Pacing Configuration for Cardiac Resynchronization Therapy With a Quadripolar Left Ventricular Lead? Comparison of double kissing crush versus Culotte stenting for unprotected distal left main bifurcation lesions: results from a multicenter, randomized, prospective DKCRUSH-III study Usefulness of the SYNTAX score II to validate 2-year outcomes in patients with complex coronary artery disease undergoing percutaneous coronary intervention: A large single-center study Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease A Special Report From the American Heart Association and American College of Cardiology

Clinical Trial2008 Oct;156(4):641-648.e1.

JOURNAL:Am Heart J. Article Link

A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation in patients with systolic heart failure: rationale, design, and baseline patient characteristics.

Abraham WT, , FIX-HF-5 Investigators and Coordinators. Keywords: QRS duration; exercise tolerance; heart failure; peak Vo(2); quality of life

ABSTRACT


Cardiac contractility modulation (CCM) signals are nonexcitatory electrical signals delivered during the cardiac absolute refractory period that enhance the strength of cardiac muscular contraction. Prior research in experimental and human heart failure has shown that CCM signals normalize phosphorylation of key proteins and expression of genes coding for proteins involved in regulation of calcium cycling and contraction. The results of prior clinical studies of CCM have supported its safety and efficacy. A large-scale clinical study, the FIX-HF-5 study, is currently underway to test the safety and efficacy of this treatment. In this article, we provide an overview of the system used to deliver CCM signals, the implant procedure, and the details and rationale of the FIX-HF-5 study design. Baseline characteristics for patients randomized in this trial are also presented.