CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation The mSToPS Randomized Clinical Trial Changes in high-sensitivity troponin after drug-coated balloon angioplasty for drug-eluting stent restenosis sST2 Predicts Outcome in Chronic Heart Failure Beyond NT−proBNP and High-Sensitivity Troponin T Impact of Statins on Cardiovascular Outcomes Following Coronary Artery Calcium Scoring Comparison of Heart Team vs Interventional Cardiologist Recommendations for the Treatment of Patients With Multivessel Coronary Artery Disease In-Hospital Costs and Costs of Complications of Chronic Total Occlusion Angioplasty Insights From the OPEN-CTO Registry Association of CYP2C19 Loss-of-Function Alleles with Major Adverse Cardiovascular Events of Clopidogrel in Stable Coronary Artery Disease Patients Undergoing Percutaneous Coronary Intervention: Meta-analysis Incidence, Predictors, and Outcomes of In-Hospital Percutaneous Coronary Intervention Following Coronary Artery Bypass Grafting Level of Scientific Evidence Underlying the Current American College of Cardiology/American Heart Association Clinical Practice Guidelines Improving the Design of Future PCI Trials for Stable Coronary Artery Disease: JACC State-of-the-Art Review

Review Article2018 Sep;72(3):179-185.

JOURNAL:J Cardiol. Article Link

Histopathological validation of optical coherence tomography findings of the coronary arteries

Fujii K, Kawakami R, Hirota S. Keywords: atherosclerosis; OCT; Stent; histopathological validation

ABSTRACT


Optical coherence tomography (OCT), a catheter-based imaging modality for the visualization of coronary arteries, is widely used during percutaneous coronary intervention to improve the understanding of the anatomy of coronary artery stenosis and to elucidate the mechanisms of atherosclerosis. In this review, we provide a short description of the histopathological validations of OCT for visualizing atherosclerotic plaques and vascularhealing response after drug-eluting stent (DES) implantation. Because OCT measures the intensity of light returning from within a tissue, tissue having a higher heterogeneity of optical index of refraction, such as microcalcification deposition and foam cell accumulation on the luminal surface, may exhibit stronger optical scattering that appears as a thin-cap fibroatheroma image. Furthermore, even if OCT shows exposed uncovered stent struts, some of the struts could be re-endothelialized. In our ex vivo histopathological experience, re-endothelialization at the surface of stent struts was confirmed by histopathological analysis, although OCT images showed exposed uncovered struts after DES implantation. Therefore, careful interpretation is required to assess tissue morphology and stent strut coverage by OCT.