CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Increased Risk of Valvular Heart Disease in Systemic Sclerosis: An Underrecognized Cardiac Complication Aspirin with or without Clopidogrel after Transcatheter Aortic-Valve Implantation Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis Intravascular Ultrasound and Angioscopy Assessment of Coronary Plaque Components in Chronic Totally Occluded Lesions Effect of Evolocumab on Complex Coronary Disease Requiring Revascularization A new strategy for discontinuation of dual antiplatelet therapy: the RESET Trial (REal Safety and Efficacy of 3-month dual antiplatelet Therapy following Endeavor zotarolimus-eluting stent implantation) Identifying coronary artery disease patients at risk for sudden and/or arrhythmic death: remaining limitations of the electrocardiogram Transcatheter Aortic Valve Replacement in Low-risk Patients With Bicuspid Aortic Valve Stenosis Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions

Review Article2018 Sep;72(3):179-185.

JOURNAL:J Cardiol. Article Link

Histopathological validation of optical coherence tomography findings of the coronary arteries

Fujii K, Kawakami R, Hirota S. Keywords: atherosclerosis; OCT; Stent; histopathological validation

ABSTRACT


Optical coherence tomography (OCT), a catheter-based imaging modality for the visualization of coronary arteries, is widely used during percutaneous coronary intervention to improve the understanding of the anatomy of coronary artery stenosis and to elucidate the mechanisms of atherosclerosis. In this review, we provide a short description of the histopathological validations of OCT for visualizing atherosclerotic plaques and vascularhealing response after drug-eluting stent (DES) implantation. Because OCT measures the intensity of light returning from within a tissue, tissue having a higher heterogeneity of optical index of refraction, such as microcalcification deposition and foam cell accumulation on the luminal surface, may exhibit stronger optical scattering that appears as a thin-cap fibroatheroma image. Furthermore, even if OCT shows exposed uncovered stent struts, some of the struts could be re-endothelialized. In our ex vivo histopathological experience, re-endothelialization at the surface of stent struts was confirmed by histopathological analysis, although OCT images showed exposed uncovered struts after DES implantation. Therefore, careful interpretation is required to assess tissue morphology and stent strut coverage by OCT.