CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Mathematical modelling of endovascular drug delivery: balloons versus stents Rivaroxaban for Thromboprophylaxis in High-Risk Ambulatory Patients With Cancer Percutaneous Left Atrial Appendage Occlusion for Patients in Atrial Fibrillation Suboptimal for Warfarin Therapy: 5-year Results of the PLAATO (Percutaneous Left Atrial Appendage Transcatheter Occlusion) Study Prospective Evaluation of Transseptal TMVR for Failed Surgical Bioprostheses: MITRAL Trial Valve-in-Valve Arm 1-Year Outcomes Risk of Cardiovascular Diseases Among Older Breast Cancer Survivors in the United States: A Matched Cohort Study Implications of the local hemodynamic forces on the formation and destabilization of neoatherosclerotic lesions Strain-Guided Management of Potentially Cardiotoxic Cancer Therapy Evolving insights into the role of local shear stress in late stent failure from neoatherosclerosis formation and plaque destabilization Cardio-oncology: A Focus on Cardiotoxicity Ablation Versus Drug Therapy for Atrial Fibrillation in Heart Failure Results From the CABANA Trial

Original Research2018 Nov;33(6):638-644.

JOURNAL:Curr Opin Cardiol. Article Link

Role of local coronary blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and coronary plaque

Siasos G, Tsigkou V, Stone PH et al. Keywords: endothelial shear stress; local blood flow patterns; epicardial and microvascular endothelial dysfunction

ABSTRACT



PURPOSE OF REVIEW - The natural history of coronary atherosclerosis is complex and atherosclerotic plaques exhibit large morphologic and functional variability within the same individual as well as over time. The purpose of this article is to review the role of blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and atherosclerosis progression.


RECENT FINDINGS - Recent breakthroughs in cardiovascular imaging have facilitated in-vivo characterization of the anatomic and functional characteristics of atherosclerotic plaques and have highlighted the role of endothelial shear stress and epicardial and microvascular endothelial dysfunction in the natural history of coronary atherosclerosis.


SUMMARY - There is an important need to identify individual lesions which may progress to vulnerable plaque in order to provide early therapeutic management. Evaluation of endothelial shear stress, local blood flow patterns, epicardial and microvascular endothelial dysfunction, as well as their complex associations might indicate those patients who have microvascular endothelial dysfunction and increased risk for upstream epicardial endothelial dysfunction and plaque progression. Such high-risk patients could potentially be targeted for more intensive therapeutic strategies to prevent the progression of both microvascular and epicardial atherosclerotic manifestations.