CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Percutaneous Coronary Intervention Readmissions Where Are the Solutions? Reappraisal of Reported Genes for Sudden Arrhythmic Death: An Evidence-Based Evaluation of Gene Validity for Brugada Syndrome Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents Comparison of Stenting Versus Bypass Surgery According to the Completeness of Revascularization in Severe Coronary Artery Disease: Patient-Level Pooled Analysis of the SYNTAX, PRECOMBAT, and BEST Trials Multimodality imaging in cardiology: a statement on behalf of the Task Force on Multimodality Imaging of the European Association of Cardiovascular Imaging Advances in Clinical Cardiology 2020: A Summary of Key Clinical Trials High-Sensitivity Troponin I Levels and Coronary Artery Disease Severity, Progression, and Long-Term Outcomes Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction Randomized comparison of stent strut coverage following angiography- or optical coherence tomography-guided percutaneous coronary intervention

Original Research2018 Nov;33(6):638-644.

JOURNAL:Curr Opin Cardiol. Article Link

Role of local coronary blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and coronary plaque

Siasos G, Tsigkou V, Stone PH et al. Keywords: endothelial shear stress; local blood flow patterns; epicardial and microvascular endothelial dysfunction

ABSTRACT



PURPOSE OF REVIEW - The natural history of coronary atherosclerosis is complex and atherosclerotic plaques exhibit large morphologic and functional variability within the same individual as well as over time. The purpose of this article is to review the role of blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and atherosclerosis progression.


RECENT FINDINGS - Recent breakthroughs in cardiovascular imaging have facilitated in-vivo characterization of the anatomic and functional characteristics of atherosclerotic plaques and have highlighted the role of endothelial shear stress and epicardial and microvascular endothelial dysfunction in the natural history of coronary atherosclerosis.


SUMMARY - There is an important need to identify individual lesions which may progress to vulnerable plaque in order to provide early therapeutic management. Evaluation of endothelial shear stress, local blood flow patterns, epicardial and microvascular endothelial dysfunction, as well as their complex associations might indicate those patients who have microvascular endothelial dysfunction and increased risk for upstream epicardial endothelial dysfunction and plaque progression. Such high-risk patients could potentially be targeted for more intensive therapeutic strategies to prevent the progression of both microvascular and epicardial atherosclerotic manifestations.