CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Impact of Statins on Cardiovascular Outcomes Following Coronary Artery Calcium Scoring Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial Left Ventricular Assist Devices: Synergistic Model Between Technology and Medicine Changes in high-sensitivity troponin after drug-coated balloon angioplasty for drug-eluting stent restenosis Comparison of Heart Team vs Interventional Cardiologist Recommendations for the Treatment of Patients With Multivessel Coronary Artery Disease In-Hospital Costs and Costs of Complications of Chronic Total Occlusion Angioplasty Insights From the OPEN-CTO Registry Level of Scientific Evidence Underlying the Current American College of Cardiology/American Heart Association Clinical Practice Guidelines sST2 Predicts Outcome in Chronic Heart Failure Beyond NT−proBNP and High-Sensitivity Troponin T Contrast-Associated Acute Kidney Injury and Serious Adverse Outcomes Following Angiography Association of CYP2C19 Loss-of-Function Alleles with Major Adverse Cardiovascular Events of Clopidogrel in Stable Coronary Artery Disease Patients Undergoing Percutaneous Coronary Intervention: Meta-analysis

Original Research2018 Nov;33(6):638-644.

JOURNAL:Curr Opin Cardiol. Article Link

Role of local coronary blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and coronary plaque

Siasos G, Tsigkou V, Stone PH et al. Keywords: endothelial shear stress; local blood flow patterns; epicardial and microvascular endothelial dysfunction

ABSTRACT



PURPOSE OF REVIEW - The natural history of coronary atherosclerosis is complex and atherosclerotic plaques exhibit large morphologic and functional variability within the same individual as well as over time. The purpose of this article is to review the role of blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and atherosclerosis progression.


RECENT FINDINGS - Recent breakthroughs in cardiovascular imaging have facilitated in-vivo characterization of the anatomic and functional characteristics of atherosclerotic plaques and have highlighted the role of endothelial shear stress and epicardial and microvascular endothelial dysfunction in the natural history of coronary atherosclerosis.


SUMMARY - There is an important need to identify individual lesions which may progress to vulnerable plaque in order to provide early therapeutic management. Evaluation of endothelial shear stress, local blood flow patterns, epicardial and microvascular endothelial dysfunction, as well as their complex associations might indicate those patients who have microvascular endothelial dysfunction and increased risk for upstream epicardial endothelial dysfunction and plaque progression. Such high-risk patients could potentially be targeted for more intensive therapeutic strategies to prevent the progression of both microvascular and epicardial atherosclerotic manifestations.