CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

The prevalence and importance of frailty in heart failure with reduced ejection fraction - an analysis of PARADIGM-HF and ATMOSPHERE Primary Prevention of Heart Failure in Women Optical coherence tomography and intravascular ultrasound assessment of the anatomic size and wall thickness of a muscle bridge segment Contemporary real-world outcomes of surgical aortic valve replacement in 141,905 low-risk, intermediate-risk, and high-risk patients The Management of Atrial Fibrillation in Heart Failure: An Expert Panel Consensus Empagliflozin Increases Cardiac Energy Production in Diabetes - Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors Cardiovascular Considerations in Caring for Pregnant Patients: A Scientific Statement From the American Heart Association rhACE2 Therapy Modifies Bleomycin-Induced Pulmonary Hypertension via Rescue of Vascular Remodeling Circadian-Regulated Cell Death in Cardiovascular Diseases A trial to evaluate the effect of the sodium-glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF)

Original Research2018 Nov;33(6):638-644.

JOURNAL:Curr Opin Cardiol. Article Link

Role of local coronary blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and coronary plaque

Siasos G, Tsigkou V, Stone PH et al. Keywords: endothelial shear stress; local blood flow patterns; epicardial and microvascular endothelial dysfunction

ABSTRACT



PURPOSE OF REVIEW - The natural history of coronary atherosclerosis is complex and atherosclerotic plaques exhibit large morphologic and functional variability within the same individual as well as over time. The purpose of this article is to review the role of blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and atherosclerosis progression.


RECENT FINDINGS - Recent breakthroughs in cardiovascular imaging have facilitated in-vivo characterization of the anatomic and functional characteristics of atherosclerotic plaques and have highlighted the role of endothelial shear stress and epicardial and microvascular endothelial dysfunction in the natural history of coronary atherosclerosis.


SUMMARY - There is an important need to identify individual lesions which may progress to vulnerable plaque in order to provide early therapeutic management. Evaluation of endothelial shear stress, local blood flow patterns, epicardial and microvascular endothelial dysfunction, as well as their complex associations might indicate those patients who have microvascular endothelial dysfunction and increased risk for upstream epicardial endothelial dysfunction and plaque progression. Such high-risk patients could potentially be targeted for more intensive therapeutic strategies to prevent the progression of both microvascular and epicardial atherosclerotic manifestations.