CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Ablation Versus Drug Therapy for Atrial Fibrillation in Heart Failure Results From the CABANA Trial Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review Venous and Arterial Thromboembolism in Patients With Cancer: JACC: CardioOncology State-of-the-Art Review 2020 ACC Expert Consensus Decision Pathway on Management of Bleeding in Patients on Oral Anticoagulants: A Report of the American College of Cardiology Solution Set Oversight Committee The Art of SAPIEN 3 Transcatheter Mitral Valve Replacement in Valve-in-Ring and Valve-in-Mitral-Annular-Calcification Procedures 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension 2015 ACC/HRS/SCAI Left Atrial Appendage Occlusion Device Societal Overview Does pulsed field ablation regress over time? A quantitative temporal analysis of pulmonary vein isolation Functional Mitral Regurgitation Outcome and Grading in Heart Failure With Reduced Ejection Fraction Thirty-Day Outcomes Following Transfemoral Transseptal Transcatheter Mitral Valve Replacement: Intrepid TMVR Early Feasibility Study Results

Original Research2019 Feb 15;93(S1):772-778.

JOURNAL:Catheter Cardiovasc Interv. Article Link

Optical coherence tomography and intravascular ultrasound assessment of the anatomic size and wall thickness of a muscle bridge segment

Ye Z, Lai Y, Yao Y et al. Keywords: coronary perforation; myocardial bridging

ABSTRACT


OBJECTIVE - To use optical coherence tomography (OCT) and intravascular ultrasound (IVUS) in assessing myocardial bridging (MB) vessel size and wall thickness.

 

BACKGROUND - During stent implantation, MB is associated with complications, especially perforation.

 

METHODS - OCT and IVUS were performed in 56 patients with typical angiographic "milking" from November 2016 to May 2017. The vessel area and thickness in the MB segments and adjacent proximal and distal reference segments were measured and compared with eight normal left anterior descending (LAD) segment (no atherosclerosis in a segment that was at least 20 mm long and that began ~40 mm distal to the LAD ostium).

 

RESULTS - Compared with the reference vessel size distal to the MB segment (6.3 ± 1.8 mm2 ), the IVUS-measured size of the tunneled vessel during diastole was significantly smaller (6.0 ± 1.9 mm2 , p < 0.05) (remodeling index = 0.79 ± 0.18). The minimum intramyocardial arterial wall thickness was 0.16 ± 0.02 mm, significantly thinner than that of the mean reference (0.22 ± 0.03 mm, p < 0.001). The location of the thinnest arterial wall was in the distal and middle MB segments in 45 (80.4%) and 11 (19.6%) patients, respectively, and was not related to the degree of systolic compression or remodeling index. The walls of the middle and distal MB subsegments, but not of the proximal MB subsegment, were thinner than that of the comparison group of normal LADs.

 

CONCLUSION - The coronary vessel involved in an MB is both smaller and thinner than that of the adjacent non-MB segment. This may explain the increased frequency and severity of coronary perforation during stent implantation.

 

© 2019 Wiley Periodicals, Inc.