CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Defining High Bleeding Risk in Patients Undergoing Percutaneous Coronary Intervention: A Consensus Document From the Academic Research Consortium for High Bleeding Risk Impact of Statins on Cardiovascular Outcomes Following Coronary Artery Calcium Scoring Left Ventricular Assist Devices: Synergistic Model Between Technology and Medicine Changes in high-sensitivity troponin after drug-coated balloon angioplasty for drug-eluting stent restenosis sST2 Predicts Outcome in Chronic Heart Failure Beyond NT−proBNP and High-Sensitivity Troponin T Comparison of Heart Team vs Interventional Cardiologist Recommendations for the Treatment of Patients With Multivessel Coronary Artery Disease In-Hospital Costs and Costs of Complications of Chronic Total Occlusion Angioplasty Insights From the OPEN-CTO Registry Level of Scientific Evidence Underlying the Current American College of Cardiology/American Heart Association Clinical Practice Guidelines Association of CYP2C19 Loss-of-Function Alleles with Major Adverse Cardiovascular Events of Clopidogrel in Stable Coronary Artery Disease Patients Undergoing Percutaneous Coronary Intervention: Meta-analysis Contrast-Associated Acute Kidney Injury and Serious Adverse Outcomes Following Angiography

Original Research2019 Feb 15;93(S1):772-778.

JOURNAL:Catheter Cardiovasc Interv. Article Link

Optical coherence tomography and intravascular ultrasound assessment of the anatomic size and wall thickness of a muscle bridge segment

Ye Z, Lai Y, Yao Y et al. Keywords: coronary perforation; myocardial bridging

ABSTRACT


OBJECTIVE - To use optical coherence tomography (OCT) and intravascular ultrasound (IVUS) in assessing myocardial bridging (MB) vessel size and wall thickness.

 

BACKGROUND - During stent implantation, MB is associated with complications, especially perforation.

 

METHODS - OCT and IVUS were performed in 56 patients with typical angiographic "milking" from November 2016 to May 2017. The vessel area and thickness in the MB segments and adjacent proximal and distal reference segments were measured and compared with eight normal left anterior descending (LAD) segment (no atherosclerosis in a segment that was at least 20 mm long and that began ~40 mm distal to the LAD ostium).

 

RESULTS - Compared with the reference vessel size distal to the MB segment (6.3 ± 1.8 mm2 ), the IVUS-measured size of the tunneled vessel during diastole was significantly smaller (6.0 ± 1.9 mm2 , p < 0.05) (remodeling index = 0.79 ± 0.18). The minimum intramyocardial arterial wall thickness was 0.16 ± 0.02 mm, significantly thinner than that of the mean reference (0.22 ± 0.03 mm, p < 0.001). The location of the thinnest arterial wall was in the distal and middle MB segments in 45 (80.4%) and 11 (19.6%) patients, respectively, and was not related to the degree of systolic compression or remodeling index. The walls of the middle and distal MB subsegments, but not of the proximal MB subsegment, were thinner than that of the comparison group of normal LADs.

 

CONCLUSION - The coronary vessel involved in an MB is both smaller and thinner than that of the adjacent non-MB segment. This may explain the increased frequency and severity of coronary perforation during stent implantation.

 

© 2019 Wiley Periodicals, Inc.