CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

AIM2-driven inflammasome activation in heart failure Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials JACC Scientific Expert Panel 2-year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy Rare Genetic Variants Associated With Sudden Cardiac Death in Adults Impact of Optimal Medical Therapy on 10-Year Mortality After Coronary Revascularization Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia Timing and Causes of Unplanned Readmissions After Percutaneous Coronary Intervention: Insights From the Nationwide Readmission Database Residual Inflammatory Risk in Patients With Low LDL Cholesterol Levels Undergoing Percutaneous Coronary Intervention Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation The mSToPS Randomized Clinical Trial Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial

Original Research2018 Aug 13;11(15):1423-1433.

JOURNAL:JACC Cardiovasc Interv. Article Link

Prognostic Implication of Thermodilution Coronary Flow Reserve in Patients Undergoing Fractional Flow Reserve Measurement

Lee JM, Choi KH, Koo BK et al. Keywords: coronary artery disease; coronary flow reserve; fractional flow reserve; myocardial ischemia; percutaneous coronary intervention; prognosis

ABSTRACT


OBJECTIVES - This study investigated the prognostic implication of coronary flow reserve (CFR) in patients who underwent fractional flow reserve (FFR) measurement.


BACKGROUNDLimited data are available regarding the long-term prognosis associated with thermodilution CFR in patients with coronary artery disease.


METHODSA total of 519 patients (737 vessels) who did not undergo revascularization were classified according to FFR and CFR values. Low FFR and low CFR were defined with upper thresholds of 0.8 and 2.0, respectively. FFR and CFR were measured by a pressure-temperature sensor-tipped wire. Clinical outcomes were assessed by the vessel-oriented composite outcome (VOCO) (a composite of cardiac death, vessel-specific myocardial infarction, and vessel-specific revascularization) during 5 years of follow-up.


RESULTSThe categorical agreement (kappa = 0.080; p = 0.024) between FFR and CFR were modest, and 30.6% of the population showed discordant results between FFR and CFR. During 5 years of follow-up, patients with low CFR had a significantly higher risk of VOCO than did those with high CFR (hazard ratio [HR]: 3.171; 95% CI: 1.664 to 6.042; p < 0.001). Among patients with high FFR, there were no differences in clinical risk factor profiles, FFR, or stenosis severity between the high-CFR and low-CFR groups, and low CFR was an independent predictor for VOCO (HR: 4.999; 95% CI: 2.104 to 11.879; p < 0.001). In a 4-group classification according to both FFR and CFR, patients with low FFR and low CFR had the highest risk of VOCO (17.9%; overall p < 0.001).


CONCLUSIONSPatients with low CFR had a significantly higher risk of clinical events during 5 years of follow-up. Low CFR was an independent predictor for patient-oriented composite outcome among patients with high FFR. These results support the value of CFR in patients who undergo FFR measurement. (Clinical, Physical and Prognostic Implication of Microvascular Status; NCT02186093).


Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.