CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Screening for Atrial Fibrillation With ECG: USPSTF Recommendation Managing Multivessel Coronary Artery Disease in Patients With ST-Elevation Myocardial Infarction: A Comprehensive Review Outcome of patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention during on- versus off-hours (a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial substudy) Combining IVUS and Optical Coherence Tomography for More Accurate Coronary Cap Thickness Quantification and Stress/Strain Calculations: A Patient-Specific Three-Dimensional Fluid-Structure Interaction Modeling Approach Clinical Significance of Concordance or Discordance Between Fractional Flow Reserve and Coronary Flow Reserve for Coronary Physiological Indices, Microvascular Resistance, and Prognosis After Elective Percutaneous Coronary Intervention National assessment of early β-blocker therapy in patients with acute myocardial infarction in China, 2001-2011: The China Patient-centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective AMI Study Long-Term Outcomes in Women and Men Following Percutaneous Coronary Intervention Association of All-Cause and Cardiovascular Mortality With High Levels of Physical Activity and Concurrent Coronary Artery Calcification Treatment effects of systematic two-stent and provisional stenting techniques in patients with complex coronary bifurcation lesions: rationale and design of a prospective, randomised and multicentre DEFINITION II trial Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options

Original Research2017 Dec 1;120(11):1920-1925

JOURNAL:Am J Cardiol. Article Link

Comparison of Accuracy of One-Use Methods for Calculating Fractional Flow Reserve by Intravascular Optical Coherence Tomography to That Determined by the Pressure-Wire Method

Jang SJ, Ahn JM, Oh WY et al. Keywords: Calculating Fractional Flow Reserve; Intravascular Optical Coherence Tomography; Pressure-Wire Method

ABSTRACT


Although the identification of the hemodynamic significance of coronary lesions becomes important for revascularization strategy, the potential role of 3-dimensional high-resolution intracoronary optical coherence tomography (OCT) for predicting functional significance of coronary lesions remains unclear. We assessed the diagnostic performance of 2 computational approaches for deriving fractional flow reserve (FFR) from intravascular OCT images. We developed 2 methods to derive FFR-OCT by AFD (FFR-OCTAFD) and FFR-OCT by CFD (FFR-OCTCFD). Among 217 eligible patients between 2011 and 2014, 104 were included for data analysis (9 for derivation, 95 for validation). Luminal geometries from 3-dimensional OCT were used for both FFR-OCTAFD and FFR-OCTCFD calculations. The analytical fluid dynamics method calculated FFR from the blood flow resistance estimated using Poiseuille's law. For computational fluid dynamics, we numerically solved the Navier-Stokes equation in a steady-state flow with the distal porous media model for the capillary vessels. We examined the diagnostic performance of FFR-OCTAFD and FFR-OCTCFD compared with the pressure-wire measured FFR. The accuracy, sensitivity, specificity, PPV, and NPV were 86%, 65%, 94%, 81%, and 88% for FFR-OCTAFD and 86%, 73%, 91%, 76%, and 90% for FFR-OCTCFD. The area under the curve of the receiver-operating characteristic curve was 0.88 for FFR-OCTAFD and 0.86 for FFR-OCTCFD. FFR-OCTAFD and FFR-OCTCFD showed a strong linear correlation with the measured FFR (r = 0.631; p <0.001, r = 0.655; p <0.001, respectively). FFR derived from high-resolution volumetric OCT images showed high diagnostic performance for the detection of coronary ischemia. In conclusion, OCT-derived FFR may be useful for guiding the management of coronary artery disease.


Copyright © 2017 Elsevier Inc. All rights reserved.