CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Atherosclerotic plaque with ultrasonic attenuation affects coronary reflow and infarct size in patients with acute coronary syndrome: an intravascular ultrasound study Temporal Trends in Transcatheter Aortic Valve Replacement in France: FRANCE 2 to FRANCE TAVI Impact of intravascular ultrasound on the long-term clinical outcomes in the treatment of coronary ostial lesions How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) When and how to use SGLT2 inhibitors in patients with HFrEF or chronic kidney disease Novel predictor of target vessel revascularization after coronary stent implantation: Intraluminal intensity of blood speckle on intravascular ultrasound Heart Failure Outcomes With Volume-Guided Management Bridging the Gap Between Epigenetic and Genetic in PAH Sex Differences in Heart Failure With Preserved Ejection Fraction Pathophysiology: A Detailed Invasive Hemodynamic and Echocardiographic Analysis The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction: the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) trial

Original Research2017 Dec 1;120(11):1920-1925

JOURNAL:Am J Cardiol. Article Link

Comparison of Accuracy of One-Use Methods for Calculating Fractional Flow Reserve by Intravascular Optical Coherence Tomography to That Determined by the Pressure-Wire Method

Jang SJ, Ahn JM, Oh WY et al. Keywords: Calculating Fractional Flow Reserve; Intravascular Optical Coherence Tomography; Pressure-Wire Method

ABSTRACT


Although the identification of the hemodynamic significance of coronary lesions becomes important for revascularization strategy, the potential role of 3-dimensional high-resolution intracoronary optical coherence tomography (OCT) for predicting functional significance of coronary lesions remains unclear. We assessed the diagnostic performance of 2 computational approaches for deriving fractional flow reserve (FFR) from intravascular OCT images. We developed 2 methods to derive FFR-OCT by AFD (FFR-OCTAFD) and FFR-OCT by CFD (FFR-OCTCFD). Among 217 eligible patients between 2011 and 2014, 104 were included for data analysis (9 for derivation, 95 for validation). Luminal geometries from 3-dimensional OCT were used for both FFR-OCTAFD and FFR-OCTCFD calculations. The analytical fluid dynamics method calculated FFR from the blood flow resistance estimated using Poiseuille's law. For computational fluid dynamics, we numerically solved the Navier-Stokes equation in a steady-state flow with the distal porous media model for the capillary vessels. We examined the diagnostic performance of FFR-OCTAFD and FFR-OCTCFD compared with the pressure-wire measured FFR. The accuracy, sensitivity, specificity, PPV, and NPV were 86%, 65%, 94%, 81%, and 88% for FFR-OCTAFD and 86%, 73%, 91%, 76%, and 90% for FFR-OCTCFD. The area under the curve of the receiver-operating characteristic curve was 0.88 for FFR-OCTAFD and 0.86 for FFR-OCTCFD. FFR-OCTAFD and FFR-OCTCFD showed a strong linear correlation with the measured FFR (r = 0.631; p <0.001, r = 0.655; p <0.001, respectively). FFR derived from high-resolution volumetric OCT images showed high diagnostic performance for the detection of coronary ischemia. In conclusion, OCT-derived FFR may be useful for guiding the management of coronary artery disease.


Copyright © 2017 Elsevier Inc. All rights reserved.